On the Estimation of Confidence Intervals for Binomial Population Proportions in Astronomy: The Simplicity and Superiority of the Bayesian Approach

Abstract I present a critical review of techniques for estimating confidence intervals on binomial population proportions inferred from success counts in small to intermediate samples. Population proportions arise frequently as quantities of interest in astronomical research; for instance, in studies aiming to constrain the bar fraction, active galactic nucleus fraction, supermassive black hole fraction, merger fraction, or red sequence fraction from counts of galaxies exhibiting distinct morphological features or stellar populations. However, two of the most widely-used techniques for estimating binomial confidence intervals — the ‘normal approximation’ and the Clopper & Pearson approach — are liable to misrepresent the degree of statistical uncertainty present under sampling conditions routinely encountered in astronomical surveys, leading to an ineffective use of the experimental data (and, worse, an inefficient use of the resources expended in obtaining that data). Hence, I provide here an overview of the fundamentals of binomial statistics with two principal aims: (I) to reveal the ease with which (Bayesian) binomial confidence intervals with more satisfactory behaviour may be estimated from the quantiles of the beta distribution using modern mathematical software packages (e.g. r, matlab, mathematica, idl, python); and (ii) to demonstrate convincingly the major flaws of both the ‘normal approximation’ and the Clopper & Pearson approach for error estimation.

[1]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[2]  J. Wolfowitz,et al.  Confidence Limits for Continuous Distribution Functions , 1939 .

[3]  Binarity in Brown Dwarfs: T Dwarf Binaries Discovered with the Hubble Space Telescope Wide Field P , 2002, astro-ph/0211470.

[4]  S. Driver,et al.  The Millennium Galaxy Catalogue: Dynamically Close Pairs of Galaxies and the Global Merger Rate , 2005, astro-ph/0506635.

[5]  B. Elmegreen,et al.  Statistical Evidence That Galaxy Companions Trigger Bars and Change the Spiral Hubble Type , 1990 .

[6]  France.,et al.  Spectro-photometric close pairs in GOODS-S: major and minor companions of intermediate-mass galaxies , 2010, 1002.2145.

[7]  S. Bamford,et al.  Galaxy bimodality versus stellar mass and environment , 2006, astro-ph/0607648.

[8]  R. Abraham,et al.  ON THE FRACTION OF BARRED SPIRAL GALAXIES , 2010, 1004.0684.

[9]  E. S. Pearson,et al.  THE USE OF CONFIDENCE OR FIDUCIAL LIMITS ILLUSTRATED IN THE CASE OF THE BINOMIAL , 1934 .

[10]  N. Gehrels Confidence limits for small numbers of events in astrophysical data , 1986 .

[11]  J. Neyman,et al.  On the Problem of Confidence Intervals , 1935 .

[12]  D. Thompson,et al.  Bars in early- and late-type discs in COSMOS , 2010, 1001.1736.

[13]  S E Vollset,et al.  Confidence intervals for a binomial proportion. , 1994, Statistics in medicine.

[14]  D. Burrows,et al.  Determination of Confidence Limits for Experiments with Low Numbers of Counts , 1991 .

[15]  A. Agresti,et al.  Approximate is Better than “Exact” for Interval Estimation of Binomial Proportions , 1998 .

[16]  Rene Andrae,et al.  Error estimation in astronomy: A guide , 2010, 1009.2755.

[17]  D. Thompson,et al.  GALAXY STELLAR MASS ASSEMBLY BETWEEN 0.2 < z < 2 FROM THE S-COSMOS SURVEY , 2009, 0903.0102.

[18]  L. Brown,et al.  Interval Estimation for a Binomial Proportion , 2001 .

[19]  Thomas J. Santner,et al.  Teaching Large‐Sample Binomial Confidence Intervals , 1998 .

[20]  Timothy D. Ross,et al.  Accurate confidence intervals for binomial proportion and Poisson rate estimation , 2003, Comput. Biol. Medicine.

[21]  T. Tony Cai,et al.  Confidence Intervals for a binomial proportion and asymptotic expansions , 2002 .

[22]  R. Cousins,et al.  Frequentist evaluation of intervals estimated for a binomial parameter and for the ratio of Poisson means , 2009, 0905.3831.

[23]  C. Conselice,et al.  The structures of distant galaxies – I. Galaxy structures and the merger rate to z∼ 3 in the Hubble Ultra-Deep Field , 2007, 0711.2333.

[24]  S. Yau Mathematics and its applications , 2002 .

[25]  Bar Galaxies and Their Environments , 2002, astro-ph/0205354.

[26]  Walter L. Smith Probability and Statistics , 1959, Nature.

[27]  Red Fraction Among Satellite Galaxies with Disk-like Light Profiles: Evidence for Inflow in the H I Disk , 2010 .