Inversion of probabilistic structural models using measured transfer functions

This paper addresses the inversion of probabilistic models for the dynamical behaviour of structures using experimental data sets of measured frequency-domain transfer functions. The inversion is formulated as the minimization, with respect to the unknown parameters to be identified, of an objective function that measures a distance between the data and the model. Two such distances are proposed, based on either the loglikelihood function, or the relative entropy. As a comprehensive example, a probabilistic model for the dynamical behaviour of a slender beam is inverted using simulated data. The methodology is then applied to a civil and environmental engineering case history involving the identification of a probabilistic model for ground-borne vibrations from real experimental data.

[1]  Christian Soize,et al.  Structural Acoustics and Vibration , 2001 .

[2]  John E. Mottershead,et al.  Finite Element Model Updating in Structural Dynamics , 1995 .

[3]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[4]  C Soize,et al.  Maximum entropy approach for modeling random uncertainties in transient elastodynamics. , 2001, The Journal of the Acoustical Society of America.

[5]  Bertrand Iooss Seismic reflection traveltimes in two-dimensional statistically anisotropic random media , 1998 .

[6]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[7]  N. Wiener The Homogeneous Chaos , 1938 .

[8]  J. Besag Statistical Analysis of Non-Lattice Data , 1975 .

[9]  Claude E. Shannon,et al.  A Mathematical Theory of Communications , 1948 .

[10]  Christian Soize Random matrix theory for modeling uncertainties in computational mechanics , 2005 .

[11]  David J. Nott,et al.  Pairwise likelihood methods for inference in image models , 1999 .

[12]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[13]  Evangéline Capiez-Lernout,et al.  Application au désaccordage des roues aubagées.Dynamique des structures tournantes à symétrie cyclique en présence d'incertitudes aléatoires , 2004 .

[14]  G. Schuëller A state-of-the-art report on computational stochastic mechanics , 1997 .

[15]  David B. Fogel,et al.  Evolutionary Computation: Towards a New Philosophy of Machine Intelligence , 1995 .

[16]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[17]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[18]  R. Ibrahim Structural Dynamics with Parameter Uncertainties , 1987 .

[19]  J. Beck,et al.  Updating Models and Their Uncertainties. I: Bayesian Statistical Framework , 1998 .

[20]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[21]  Christian Soize,et al.  Identification of Chaos Representations of Elastic Properties of Random Media Using Experimental Vibration Tests , 2007 .

[22]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[23]  A. Sarkar,et al.  Mid-frequency structural dynamics with parameter uncertainty , 2001 .

[24]  Geert Degrande,et al.  A non-parametric probabilistic model for ground-borne vibrations in buildings , 2006 .

[25]  N. U. Prabhu,et al.  Statistical inference in stochastic processes , 1988 .

[26]  W. S. Hall,et al.  Boundary element methods for soil-structure interaction , 2004 .

[27]  Graham C. Goodwin,et al.  Estimated Transfer Functions with Application to Model Order Selection , 1992 .

[28]  M. Rosenblatt Remarks on Some Nonparametric Estimates of a Density Function , 1956 .

[29]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[30]  Régis Cottereau,et al.  Probabilistic models of impedance matrices. Application to dynamic soil-structure interaction , 2007 .

[31]  Roger G. Ghanem,et al.  Physical Systems with Random Uncertainties: Chaos Representations with Arbitrary Probability Measure , 2005, SIAM J. Sci. Comput..

[32]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[33]  Christian Soize,et al.  Maximum likelihood estimation of stochastic chaos representations from experimental data , 2006 .

[34]  Christian Soize A nonparametric model of random uncertainties for reduced matrix models in structural dynamics , 2000 .

[35]  G. I. Schuëller,et al.  Computational stochastic mechanics – recent advances , 2001 .

[36]  Lennart Ljung Some results on identifying linear systems using frequency domain data , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[37]  Christian Soize,et al.  Reduced models in the medium frequency range for general dissipative structural-dynamics systems , 1998, European Journal of Mechanics - A/Solids.

[38]  Roger G. Ghanem,et al.  On the construction and analysis of stochastic models: Characterization and propagation of the errors associated with limited data , 2006, J. Comput. Phys..

[39]  E. Jaynes Probability theory : the logic of science , 2003 .

[40]  Christian Soize,et al.  Probabilistic approach for model and data uncertainties and its experimental identification in structural dynamics: Case of composite sandwich panels , 2006 .

[41]  C. S. Manohar,et al.  Progress in structural dynamics with stochastic parameter variations: 1987-1998 , 1999 .

[42]  Solomon Kullback,et al.  Information Theory and Statistics , 1970, The Mathematical Gazette.

[43]  Richard A. Silverman,et al.  Wave Propagation in a Random Medium , 1960 .

[44]  Sharif Rahman,et al.  A solution of the random eigenvalue problem by a dimensional decomposition method , 2006 .

[45]  R. Fisher,et al.  On the Mathematical Foundations of Theoretical Statistics , 1922 .

[46]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .

[47]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[48]  D. W. Scott,et al.  Multivariate Density Estimation, Theory, Practice and Visualization , 1992 .

[49]  Sondipon Adhikari,et al.  Random matrix eigenvalue problems in structural dynamics , 2007 .

[50]  Lennart Ljung,et al.  Comparing different approaches to model error modeling in robust identification , 2002, Autom..

[51]  Christian Soize A comprehensive overview of a non-parametric probabilistic approach of model uncertainties for predictive models in structural dynamics , 2005 .

[52]  Stefan Buske,et al.  Estimating statistical parameters of an elastic random medium from traveltime fluctuations of refracted waves , 2005 .

[53]  Christian Soize Non-Gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators , 2006 .

[54]  T. M. Al-Hussaini,et al.  Freefield vibrations due to dynamic loading on a tunnel embedded in a stratified medium , 2005 .

[55]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[56]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[57]  D. Cox,et al.  A note on pseudolikelihood constructed from marginal densities , 2004 .

[58]  G. Casella,et al.  Statistical Inference , 2003, Encyclopedia of Social Network Analysis and Mining.

[59]  Eric Savin,et al.  Midfrequency Vibrations of a Complex Structure: Experiments and Comparison with Numerical Simulations , 2002 .

[60]  Lambros S. Katafygiotis,et al.  Bayesian modal updating using complete input and incomplete response noisy measurements , 2002 .