Uncertainty representation in software models: a survey

This paper provides a comprehensive overview and analysis of research work on how uncertainty is currently represented in software models. The survey presents the definitions and current research status of different proposals for addressing uncertainty modeling and introduces a classification framework that allows to compare and classify existing proposals, analyze their current status and identify new trends. In addition, we discuss possible future research directions, opportunities and challenges.

[1]  Zongmin Ma,et al.  Representing and reasoning on fuzzy UML models: A description logic approach , 2011, Expert Syst. Appl..

[2]  Antonio Vallecillo,et al.  Belief Uncertainty in Software Models , 2019, 2019 IEEE/ACM 11th International Workshop on Modelling in Software Engineering (MiSE).

[3]  J. Pearl,et al.  The Book of Why: The New Science of Cause and Effect , 2018 .

[4]  Bran Selic,et al.  Execution of UML models: a systematic review of research and practice , 2018, Software & Systems Modeling.

[5]  Jianchun Xing,et al.  FAME: A UML-based framework for modeling fuzzy self-adaptive software , 2016, Inf. Softw. Technol..

[6]  Jo Wood,et al.  Collaborative Geovisualization: Object-Field Representations with Semantic and Uncertainty Information , 2005, OTM Workshops.

[7]  Mohammad Abdollahi Azgomi,et al.  Reliability evaluation of UML/DAM software architectures under parameter uncertainty , 2018, IET Softw..

[8]  Zongmin Ma,et al.  A probabilistic object-oriented database model with fuzzy probability measures and its algebraic operations , 2015, J. Intell. Fuzzy Syst..

[9]  Martin Gogolla,et al.  On OCL-based imperative languages , 2014, Sci. Comput. Program..

[10]  Antonio Vallecillo,et al.  Expressing Measurement Uncertainty in OCL/UML Datatypes , 2018, ECMFA.

[11]  Bran Selic,et al.  Specifying uncertainty in use case models , 2018, J. Syst. Softw..

[12]  Mehrdad Sabetzadeh,et al.  HITECS: A UML Profile and Analysis Framework for Hardware-in-the-Loop Testing of Cyber Physical Systems , 2018, MoDELS.

[13]  Tongquan Wei,et al.  Quantitative Analysis of Variation-Aware Internet of Things Designs Using Statistical Model Checking , 2016, 2016 IEEE International Conference on Software Quality, Reliability and Security (QRS).

[14]  Carla Schwengber ten Caten,et al.  Measurement Uncertainty: Literature Review and Research Trends , 2012, IEEE Transactions on Instrumentation and Measurement.

[15]  Mark van den Brand,et al.  Defining the C-ITS Reference Architecture , 2018, 2018 IEEE International Conference on Software Architecture Companion (ICSA-C).

[16]  Antonio Vallecillo,et al.  Adding uncertainty and units to quantity types in software models , 2016, SLE.

[17]  Rick Salay,et al.  A Generalized Formal Framework for Partial Modeling , 2015, FASE.

[18]  Flavio Oquendo Coping with Uncertainty in Systems-of-Systems Architecture Modeling on the IoT with SosADL , 2019, 2019 14th Annual Conference System of Systems Engineering (SoSE).

[19]  Martin Gogolla,et al.  Native Support for UML and OCL Primitive Datatypes Enriched with Uncertainty in USE , 2019, OCL@MoDELS.

[20]  Simona Bernardi,et al.  Dependability modeling and analysis of software systems specified with UML , 2012, CSUR.

[21]  Andrzej Pieczynski,et al.  Employing fuzzy logic in feature diagrams to model variability in software product-lines , 2003, 10th IEEE International Conference and Workshop on the Engineering of Computer-Based Systems, 2003. Proceedings..

[22]  Ali A. Ghorbani,et al.  A belief-theoretic framework for the collaborative development and integration of para-consistent conceptual models , 2009, J. Syst. Softw..

[23]  Adolfo R. de Soto,et al.  Fuzzy systems and neural networks XML schemas for Soft Computing , 2003 .

[24]  Samaneh Shokravi,et al.  Industrial environmental performance evaluation: A Markov-based model considering data uncertainty , 2014, Environ. Model. Softw..

[25]  David Garlan,et al.  Uncertainty in Self-Adaptive Systems: Categories, Management, and Perspectives , 2017 .

[26]  David Garlan,et al.  Uncertainty Reduction in Self-Adaptive Systems , 2018, 2018 IEEE/ACM 13th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS).

[27]  Cesar Gonzalez-Perez Modelling temporality and subjectivity in ConML: Short paper , 2013, IEEE 7th International Conference on Research Challenges in Information Science (RCIS).

[28]  Marsha Chechik,et al.  Synthesis of Partial Behavior Models from Properties and Scenarios , 2009, IEEE Transactions on Software Engineering.

[29]  Patricia Martín-Rodilla,et al.  Conceptualization and Non-Relational Implementation of Ontological and Epistemic Vagueness of Information in Digital Humanities , 2019, Informatics.

[30]  Daniel P. Thunnissen,et al.  Uncertainty Classification for the Design and Development of Complex Systems , 2003 .

[31]  Sahar Kokaly,et al.  Uncertainty, Modeling and Safety Assurance: Towards a Unified Framework , 2019, VSTTE.

[32]  Nelly Bencomo,et al.  RELAX: a language to address uncertainty in self-adaptive systems requirement , 2010, Requirements Engineering.

[33]  B. D. Hall,et al.  Component interfaces that support measurement uncertainty , 2006, Comput. Stand. Interfaces.

[34]  Rick Salay,et al.  A Methodology for Verifying Refinements of Partial Models , 2015, J. Object Technol..

[35]  Jianjiang Lu,et al.  Formalizing Fuzzy UML Class Diagrams with Fuzzy Description Logics , 2009, 2009 Third International Symposium on Intelligent Information Technology Application.

[36]  Adnan Darwiche,et al.  Modeling and Reasoning with Bayesian Networks , 2009 .

[37]  Jianchun Xing,et al.  Extending UML for the modeling of fuzzy self-adaptive software systems , 2014, The 26th Chinese Control and Decision Conference (2014 CCDC).

[38]  Vlasios Voudouris,et al.  Capturing and Representing Conceptualization Uncertainty Interactively using Object-Fields , 2006 .

[39]  Dagi Troegner,et al.  Combination of Fuzzy Sets with the Object Constraint Language (OCL) , 2010, GI Jahrestagung.

[40]  Alfonso Pierantonio,et al.  Approaching Collaborative Modeling as an Uncertainty Reduction Process , 2016, COMMitMDE@MoDELS.

[41]  Marco Ajmone Marsan,et al.  Modelling with Generalized Stochastic Petri Nets , 1995, PERV.

[42]  Olivier Barais,et al.  Modeling languages in Industry 4.0: an extended systematic mapping study , 2019, Software and Systems Modeling.

[43]  P. Macklem,et al.  Complex systems and the technology of variability analysis , 2004, Critical Care.

[44]  W. Walker,et al.  Defining Uncertainty: A Conceptual Basis for Uncertainty Management in Model-Based Decision Support , 2003 .

[45]  Kim G. Larsen,et al.  A modal process logic , 1988, [1988] Proceedings. Third Annual Information Symposium on Logic in Computer Science.

[46]  Ahmed Sharaf Eldin,et al.  Handling Uncertainty in Database: An Introduction and Brief Survey , 2015, Comput. Inf. Sci..

[47]  Jie Sheng,et al.  Modeling Probabilistic Data with Fuzzy Probability Measures in UML Class Diagrams , 2019, IFSA/NAFIPS.

[48]  Manuel Wimmer,et al.  Thirteen years of SysML: a systematic mapping study , 2019, Software and Systems Modeling.

[49]  Vahid Garousi,et al.  Traffic-aware Stress Testing of Distributed Real-Time Systems Based on UML Models in the Presence of Time Uncertainty , 2008, 2008 1st International Conference on Software Testing, Verification, and Validation.

[50]  B. D. Finetti,et al.  Theory of Probability: A Critical Introductory Treatment , 2017 .

[51]  Paola Inverardi,et al.  Model-Based Software Performance Analysis , 2011 .

[52]  Julieta Noguez,et al.  PRoModel: a model-driven software environment that facilitates and expedites the development of systems that handle uncertainty , 2012, SpringSim.

[53]  Tiberiu Letia,et al.  Fuzzy UML and Petri nets modeling investigations on the pollution impact on the air quality in the vicinity of the Black Sea Constanta Romanian resort , 2011, 2011 Federated Conference on Computer Science and Information Systems (FedCSIS).

[54]  Andres J. Ramirez,et al.  A taxonomy of uncertainty for dynamically adaptive systems , 2012, 2012 7th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS).

[55]  Sami Faïz,et al.  Modélisation conceptuelle d'objets géographiques imprécis et multiples : une approche basée F-Perceptory , 2015, SAGEO.

[56]  Tharam S. Dillon,et al.  Fuzzy nature of trust and dynamic trust modeling in service oriented environments , 2005, SWS '05.

[57]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[58]  Nelly Bencomo,et al.  RELAX: Incorporating Uncertainty into the Specification of Self-Adaptive Systems , 2009, 2009 17th IEEE International Requirements Engineering Conference.

[59]  Marsha Chechik,et al.  Formal Aspects of Computing A verification-driven framework for iterative design of controllers , 2019 .

[60]  Claes Wohlin,et al.  Guidelines for snowballing in systematic literature studies and a replication in software engineering , 2014, EASE '14.

[61]  Chris Tseng,et al.  Universal fuzzy system representation with XML , 2005, Comput. Stand. Interfaces.

[62]  Mei Chen A BDI Agents Programming Language Based Fuzzy Beliefs , 2015, 2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics.

[63]  Adnan Yazici,et al.  An intelligent fuzzy object-oriented database framework for video database applications , 2009, Fuzzy Sets Syst..

[64]  Saltelli Andrea,et al.  Global Sensitivity Analysis: The Primer , 2008 .

[65]  Erik M. Fredericks,et al.  Uncertainty in big data analytics: survey, opportunities, and challenges , 2019, Journal of Big Data.

[66]  Mazni Omar,et al.  Understanding Uncertainty of Software Requirements Engineering: A Systematic Literature Review Protocol , 2017, APRES.

[67]  Zongmin Ma,et al.  Fuzzy information modeling in UML class diagram and relational database models , 2011, Appl. Soft Comput..

[68]  David Garlan,et al.  Software engineering in an uncertain world , 2010, FoSER '10.

[69]  Krzysztof Czarnecki,et al.  Incorporating Uncertainty into Bidirectional Model Transformations and their Delta-Lens Formalization , 2016, Bx@ETAPS.

[70]  Claes Wohlin,et al.  Experimentation in Software Engineering , 2012, Springer Berlin Heidelberg.

[71]  Marsha Chechik,et al.  Managing design-time uncertainty , 2017, 2017 ACM/IEEE 20th International Conference on Model Driven Engineering Languages and Systems (MODELS).

[72]  Antonio Vallecillo,et al.  Specifying quantities in software models , 2019, Inf. Softw. Technol..

[73]  Zongmin Ma,et al.  Modeling fuzzy information in UML class diagrams and object-oriented database models , 2012, Fuzzy Sets Syst..

[74]  Martin Gogolla,et al.  On Softening OCL Invariants , 2019, J. Object Technol..

[75]  Martin Gogolla,et al.  USE: A UML-based specification environment for validating UML and OCL , 2007, Sci. Comput. Program..

[76]  Antonio Vallecillo,et al.  Incorporating measurement uncertainty into OCL/UML primitive datatypes , 2019, Software and Systems Modeling.

[77]  Michael F. Goodchild,et al.  Extending geographical representation to include fields of spatial objects , 2002, Int. J. Geogr. Inf. Sci..

[78]  Ketil Stølen,et al.  A UML-based Method for the Development of Policies to Support Trust Management , 2008, IFIPTM.

[79]  Samuel Greengard,et al.  The Internet of Things , 2015 .

[80]  Xu Chen,et al.  Fuzzy spatiotemporal object modeling based on UML class diagram , 2017, J. Intell. Fuzzy Syst..

[81]  Li Yan,et al.  Reengineering Fuzzy Spatiotemporal UML Data Model Into Fuzzy Spatiotemporal XML Model , 2017, IEEE Access.

[82]  Cesar Gonzalez-Perez,et al.  Qualifying and Quantifying Uncertainty in Digital Humanities: A Fuzzy-Logic Approach , 2019 .

[83]  Fahim Arif,et al.  Formal Verification of Time Constrains SysML Internal Block Diagram Using PRISM , 2015, 2015 15th International Conference on Computational Science and Its Applications.

[84]  Christophe Gonzales,et al.  Business Rules Uncertainty Management with Probabilistic Relational Models , 2016, RuleML.

[85]  Dorina C. Petriu,et al.  Simplifying Layered Queuing Network Models , 2015, EPEW.

[86]  Ali A. Ghorbani,et al.  Experiences on the Belief-Theoretic Integration of Para-consistent Conceptual Models , 2008 .

[87]  David Harel,et al.  Come, let's play - scenario-based programming using LSCs and the play-engine , 2003 .

[88]  Federico Ciccozzi,et al.  Handling Uncertainty in Automatically Generated Implementation Models in the Automotive Domain , 2016, 2016 42th Euromicro Conference on Software Engineering and Advanced Applications (SEAA).

[89]  Antonio Vallecillo,et al.  Expressing Measurement Uncertainty in Software Models , 2016, 2016 10th International Conference on the Quality of Information and Communications Technology (QUATIC).

[90]  J. Pearl Causality: Models, Reasoning and Inference , 2000 .

[91]  Ping Li,et al.  Modeling and verification of cyber-physical systems under uncertainty , 2017, 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD).

[92]  Hans Vangheluwe,et al.  Design-Space Exploration in MDE: An Initial Pattern Catalogue , 2014, CMSEBA@MoDELS.

[93]  Peter P. Chen,et al.  Entity — Relationship modeling and fuzzy databases , 1986, 1986 IEEE Second International Conference on Data Engineering.

[94]  Vlasios Voudouris Towards a unifying formalisation of geographic representation: the object–field model with uncertainty and semantics , 2010, Int. J. Geogr. Inf. Sci..

[95]  Heiko Koziolek,et al.  Performance evaluation of component-based software systems: A survey , 2010, Perform. Evaluation.

[96]  Richard F. Paige,et al.  Grand challenges in model-driven engineering: an analysis of the state of the research , 2020, Software and Systems Modeling.

[97]  Zongmin Ma,et al.  A formal approach for graphically building fuzzy XML model , 2019, Int. J. Intell. Syst..

[98]  Sam Malek,et al.  Ieee Transactions on Software Engineering 1 a Learning-based Framework for Engineering Feature-oriented Self-adaptive Software Systems , 2022 .

[99]  Horst Lichter,et al.  A Probabilistic Enterprise Architecture Model Evolution , 2018, 2018 IEEE 22nd International Enterprise Distributed Object Computing Conference (EDOC).

[100]  Barbara Kitchenham,et al.  Procedures for Performing Systematic Reviews , 2004 .

[101]  Michalis Famelis,et al.  MAV-Vis: A notation for model uncertainty , 2013, 2013 5th International Workshop on Modeling in Software Engineering (MiSE).

[102]  Patricia Martín-Rodilla,et al.  Representing Imprecise and Uncertain Knowledge in Digital Humanities: A Theoretical Framework and ConML Implementation with a Real Case Study , 2018, TEEM.

[103]  Zongmin Ma,et al.  A Probabilistic Object-Oriented Database Model with Fuzzy Measures , 2013, Advances in Probabilistic Databases for Uncertain Information Management.

[104]  Judea Pearl,et al.  A Probabilistic Calculus of Actions , 1994, UAI.

[105]  Doheon Lee,et al.  Fuzzy branching temporal logic , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[106]  Antonio Vallecillo,et al.  Using Physical Quantities in Robot Software Models , 2018, 2018 IEEE/ACM 1st International Workshop on Robotics Software Engineering (RoSE).

[107]  Cory J. Butz,et al.  Rough Sets for Uncertainty Reasoning , 2000, Rough Sets and Current Trends in Computing.

[108]  Ketil Stølen,et al.  Relating computer systems to sequence diagrams: the impact of underspecification and inherent nondeterminism , 2013, Formal Aspects of Computing.

[109]  Mark A. Tumeo The Meaning of Stochasticity, Randomness and Uncertainty in Environmental Modeling , 1994 .

[110]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[111]  Leonid Libkin,et al.  Propositional and Predicate Logics of Incomplete Information , 2021, KR.

[112]  David Garlan,et al.  Handling Uncertainty in Autonomic Systems , 2007 .

[113]  Alfonso Pierantonio,et al.  Managing uncertainty in bidirectional model transformations , 2015, SLE.

[114]  Ali Moeini,et al.  A New Approach Towards Procurement of Software Models Via Distributed Business Models , 2004, The Journal of Supercomputing.

[115]  Irene Barba,et al.  Generating optimized configurable business process models in scenarios subject to uncertainty , 2015, Inf. Softw. Technol..

[116]  Jingwei Cheng,et al.  Verification of fuzzy UML models with fuzzy Description Logic , 2018, Appl. Soft Comput..

[117]  Marten van Sinderen,et al.  A method for predicting the probability of business network profitability , 2014, Information Systems and e-Business Management.

[118]  Marisol García-Valls,et al.  Pragmatic cyber physical systems design based on parametric models , 2018, J. Syst. Softw..

[119]  Rick Salay,et al.  Software Product Lines with Design Choices: Reasoning about Variability and Design Uncertainty , 2017, 2017 ACM/IEEE 20th International Conference on Model Driven Engineering Languages and Systems (MODELS).

[120]  Ketil Stølen,et al.  Extending UML sequence diagrams to model trust-dependent behavior with the aim to support risk analysis , 2008, Sci. Comput. Program..

[121]  Marco Ajmone Marsan,et al.  A class of generalized stochastic Petri nets for the performance evaluation of multiprocessor systems , 1984, TOCS.

[122]  Man Zhang,et al.  Uncertainty-Wise Cyber-Physical System test modeling , 2019, Software & Systems Modeling.

[123]  P. Lee,et al.  Publication bias in meta-analysis: its causes and consequences. , 2000, Journal of clinical epidemiology.

[124]  Atle Refsdal Specifying Computer Systems with Probabilistic Sequence Diagrams , 2008 .

[125]  Tao Ma,et al.  Testing self-healing cyber-physical systems under uncertainty: a fragility-oriented approach , 2019, Software Quality Journal.

[126]  Eila Niemelä,et al.  Survey of reliability and availability prediction methods from the viewpoint of software architecture , 2007, Software & Systems Modeling.

[127]  Marco Sinnema,et al.  Classifying variability modeling techniques , 2007, Inf. Softw. Technol..

[128]  Patrick Bosc,et al.  Modeling and Querying Uncertain Relational Databases: a Survey of Approaches Based on the Possible Worlds Semantics , 2010, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[129]  Naoyasu Ubayashi,et al.  Modular Programming and Reasoning for Living with Uncertainty , 2018, ICSOFT.

[130]  Ying Wang,et al.  Fuzzy Spatiotemporal Data Modeling Based on UML , 2019, IEEE Access.

[131]  Edward A. Lee,et al.  What Good are Models? , 2018, FACS.

[132]  A. Kiureghian,et al.  Aleatory or epistemic? Does it matter? , 2009 .

[133]  Zongmin Ma,et al.  A Literature Overview of Fuzzy Conceptual Data Modeling , 2010, J. Inf. Sci. Eng..

[134]  Bran Selic,et al.  Understanding Uncertainty in Cyber-Physical Systems: A Conceptual Model , 2016, ECMFA.

[135]  Albers Albert,et al.  Extending SysML for Engineering Designers by Integration of the Contact & Channel – Approach (C&C2-A) for Function-Based Modeling of Technical Systems , 2013 .

[136]  Henri Prade,et al.  Handling Uncertainty in Relational Databases with Possibility Theory - A Survey of Different Modelings , 2018, SUM.

[137]  M.A. Vila,et al.  Softening the object-oriented database model: imprecision, uncertainty, and fuzzy types , 2001, Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569).

[138]  Sam Malek,et al.  GuideArch: Guiding the exploration of architectural solution space under uncertainty , 2013, 2013 35th International Conference on Software Engineering (ICSE).

[139]  Ronald A. Howard,et al.  Influence Diagrams , 2005, Decis. Anal..

[140]  Axel van Lamsweerde,et al.  Requirements Engineering: From System Goals to UML Models to Software Specifications , 2009 .

[141]  Mark E. Borsuk,et al.  Bridging uncertain and ambiguous knowledge with imprecise probabilities , 2012, Environ. Model. Softw..

[142]  Paola Inverardi,et al.  Model-based performance prediction in software development: a survey , 2004, IEEE Transactions on Software Engineering.

[143]  Rick Salay,et al.  Change Propagation due to Uncertainty Change , 2013, FASE.

[144]  Jordi Cabot,et al.  Formal verification of static software models in MDE: A systematic review , 2014, Inf. Softw. Technol..

[145]  Zhi Jin,et al.  Modeling Uncertainty and Evolving Self-Adaptive Software: A Fuzzy Theory Based Requirements Engineering Approach , 2017, ArXiv.

[146]  Angela Schwering,et al.  Usability of Spatio-Temporal Uncertainty Visualisation Methods , 2012, AGILE Conf..

[147]  Holger Giese,et al.  Living with Uncertainty in the Age of Runtime Models , 2014, Models@run.time@Dagstuhl.

[148]  Nelly Bencomo,et al.  A Goal-Based Modeling Approach to Develop Requirements of an Adaptive System with Environmental Uncertainty , 2009, MoDELS.

[149]  Danny Weyns,et al.  A Classification Framework of Uncertainty in Architecture-Based Self-Adaptive Systems with Multiple Quality Requirements , 2015 .

[150]  Luciano Baresi,et al.  Fuzzy Goals for Requirements-Driven Adaptation , 2010, 2010 18th IEEE International Requirements Engineering Conference.

[151]  Emanuela Natale,et al.  Business modeling of a measurement-based context: A methodological process , 2015, 2015 10th International Joint Conference on Software Technologies (ICSOFT).

[152]  Jianzhong Li,et al.  A survey of uncertain data management , 2018, Frontiers of Computer Science.

[153]  Watts S. Humphrey,et al.  Characterizing the software process: a maturity framework , 1988, IEEE Software.

[154]  Jon H Sims Williams,et al.  An object-oriented modeling framework for representing uncertainty in early variant design , 2003 .

[155]  H. Motameni,et al.  Evaluating the reliability of Communication diagram using Fuzzy Petri net , 2011, 2011 IEEE 2nd International Conference on Software Engineering and Service Science.

[156]  Sam Malek,et al.  Uncertainty in Self-Adaptive Software Systems , 2010, Software Engineering for Self-Adaptive Systems.

[157]  Alexander Artikis,et al.  Probabilistic Complex Event Recognition , 2017, ACM Comput. Surv..

[158]  Carl G. Looney,et al.  Fuzzy Petri nets for rule-based decisionmaking , 1988, IEEE Trans. Syst. Man Cybern..

[159]  Antonio Vallecillo,et al.  Managing Measurement and Occurrence Uncertainty in Complex Event Processing Systems , 2019, IEEE Access.

[160]  Li Yan,et al.  Fuzzy Description Logic and Ontology Extraction from Fuzzy Data Models , 2014 .

[161]  Rick Salay,et al.  Partial models: Towards modeling and reasoning with uncertainty , 2012, 2012 34th International Conference on Software Engineering (ICSE).

[162]  I. Aedo,et al.  Fuzziness in adaptive hypermedia models , 2002, 2002 Annual Meeting of the North American Fuzzy Information Processing Society Proceedings. NAFIPS-FLINT 2002 (Cat. No. 02TH8622).

[163]  Zongmin Ma,et al.  Construction of Fuzzy Ontologies from Fuzzy UML Models , 2013, Int. J. Comput. Intell. Syst..

[164]  Klaus Turowski,et al.  Representing and processing fuzzy information - an XML-based approach , 2002, Knowl. Based Syst..

[165]  Diego Latella,et al.  A stochastic extension of a behavioural subset of UML statechart diagrams , 2000, Proceedings. Fifth IEEE International Symposium on High Assurance Systems Engineering (HASE 2000).

[166]  John A. McDermid,et al.  Product-Line Models to Address Requirements Uncertainty, Volatility and Risk , 2011, Relating Software Requirements and Architectures.

[167]  Rick Salay,et al.  Managing requirements uncertainty with partial models , 2012, 2012 20th IEEE International Requirements Engineering Conference (RE).

[168]  Simon A. Dobson,et al.  A Context Quality Model to Support Transparent Reasoning with Uncertain Context , 2009, QuaCon.

[169]  Zongmin Ma,et al.  Extending engineering data model for web-based fuzzy information modeling , 2013, Integr. Comput. Aided Eng..

[170]  Patrice Godefroid,et al.  Model Checking Partial State Spaces with 3-Valued Temporal Logics , 1999, CAV.

[171]  Eduardas Bareisa,et al.  Software testing using imprecise OCL constraints as oracles , 2007, CompSysTech '07.

[172]  Khurram Shahzad,et al.  An architecture modeling framework for probabilistic prediction , 2014, Information Systems and e-Business Management.

[173]  Ketil Stølen,et al.  Underspecification, Inherent Nondeterminism and Probability in Sequence Diagrams , 2006, FMOODS.

[174]  Kevin Lano,et al.  A survey of model transformation design patterns in practice , 2018, J. Syst. Softw..

[175]  Xiao Jing,et al.  Modeling Uncertain and Imprecise Information in Process Modeling with UML , 2008, COMAD.

[176]  Antonio Vallecillo,et al.  Expressing Confidence in Models and in Model Transformation Elements , 2018, MoDELS.

[177]  Zakaria Maamar,et al.  A fuzzy-based credibility model to assess Web services trust under uncertainty , 2016, J. Syst. Softw..

[178]  Raffaela Mirandola,et al.  Uncertainties in the modeling of self-adaptive systems: a taxonomy and an example of availability evaluation , 2014, ICPE.

[179]  Gaurav S. Sukhatme,et al.  Identifying and Addressing Uncertainty in Architecture-Level Software Reliability Modeling , 2007, 2007 IEEE International Parallel and Distributed Processing Symposium.

[180]  Peter Novák Probabilistic Behavioural State Machines , 2009, PROMAS.

[181]  David Harel,et al.  Come, Let’s Play , 2003, Springer Berlin Heidelberg.

[182]  Connie U. Smith,et al.  Performance Engineering of Software Systems , 1990, SIGMETRICS Perform. Evaluation Rev..

[183]  Gordon S. Blair,et al.  Models@ run.time , 2009, Computer.

[184]  Kathleen V. Diegert,et al.  Error and uncertainty in modeling and simulation , 2002, Reliab. Eng. Syst. Saf..

[185]  Xiaoming Zhang,et al.  Complex Event Processing over distributed probabilistic event streams , 2012, 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery.

[186]  Sebastián Uchitel,et al.  Synthesizing Modal Transition Systems from Triggered Scenarios , 2013, IEEE Transactions on Software Engineering.

[187]  Oliver Thomas,et al.  Fuzzy-EPC Markup Language: XML Based Interchange Formats for Fuzzy Process Models , 2010, Soft Computing in XML Data Management.

[188]  Pieter J. Mosterman,et al.  Industry 4.0 as a Cyber-Physical System study , 2016, Software & Systems Modeling.

[189]  Youness Laghouaouta,et al.  Dealing with uncertainty in model transformations , 2020, SAC.

[190]  Weixing Zhu,et al.  Capability requirements modeling and verification based on fuzzy ontology , 2012 .

[191]  Xiaoling Li,et al.  A survey of queries over uncertain data , 2013, Knowledge and Information Systems.

[192]  Ketil Stølen,et al.  Stepwise refinement of sequence diagrams with soft real-time constraints , 2015, J. Comput. Syst. Sci..

[193]  Mohammad Teshnehlab,et al.  A Novel Method for Modeling and Evaluation of Uncertain Information Systems , 2008, 2008 International Conference on Information Technology.

[194]  Simona Bernardi,et al.  Model-Driven Dependability Assessment of Software Systems , 2013, Springer Berlin Heidelberg.

[195]  Bradley R. Schmerl,et al.  Reasoning about sensing uncertainty and its reduction in decision-making for self-adaptation , 2018, Sci. Comput. Program..

[196]  Richard T. Watson,et al.  Analyzing the Past to Prepare for the Future: Writing a Literature Review , 2002, MIS Q..

[197]  Bruno Woltzenlogel Paleo An Expressive Probabilistic Temporal Logic , 2016, ArXiv.

[198]  Salvatore J. Bavuso,et al.  Dynamic fault-tree models for fault-tolerant computer systems , 1992 .

[199]  Adnan Yazici,et al.  Semantic data modeling of spatiotemporal database applications , 2001, Int. J. Intell. Syst..

[200]  Tao Yue,et al.  Uncertainty-wise evolution of test ready models , 2017, Inf. Softw. Technol..

[201]  Michael Hanss,et al.  Applied Fuzzy Arithmetic: An Introduction with Engineering Applications , 2004 .

[202]  Marco Brambilla,et al.  Enhancing Flexibility in User Interaction Modeling by Adding Design Uncertainty to IFML , 2017, MODELS.

[203]  Zongmin Ma,et al.  Fuzzy XML data modeling with the UML and relational data models , 2007, Data Knowl. Eng..

[204]  Zongmin M. Ma,et al.  Modeling Fuzzy Information in the EER and Nested Relational Database Models , 2006 .

[205]  Joost-Pieter Katoen,et al.  Process algebra for performance evaluation , 2002, Theor. Comput. Sci..

[206]  Sebastian Link,et al.  Cardinality Constraints for Uncertain Data , 2014, ER.