Guest column: a casual tour around a circuit complexity bound

I will discuss the recent proof that the complexity class NEXP (nondeterministic exponential time) lacks nonuniform ACC circuits of polynomial size. The proof will be described from the perspective of someone trying to discover it.

[1]  Kristoffer Arnsfelt Hansen,et al.  A New Characterization of ACC^0 and Probabilistic CC^0 , 2009, 2009 24th Annual IEEE Conference on Computational Complexity.

[2]  Michael Sipser,et al.  Parity, circuits, and the polynomial-time hierarchy , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[3]  Russell Impagliazzo,et al.  Which problems have strongly exponential complexity? , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[4]  Stephen A. Cook,et al.  Short Propositional Formulas Represent Nondeterministic Computations , 1988, Inf. Process. Lett..

[5]  Ravi Kannan,et al.  Circuit-Size Lower Bounds and Non-Reducibility to Sparse Sets , 1982, Inf. Control..

[6]  Neil Immerman,et al.  Sparse Sets in NP-P: EXPTIME versus NEXPTIME , 1985, Inf. Control..

[7]  Ingo Schiermeyer,et al.  Solving 3-Satisfiability in Less Then 1, 579n Steps , 1992, CSL.

[8]  Ewald Speckenmeyer,et al.  Solving satisfiability in less than 2n steps , 1985, Discret. Appl. Math..

[9]  John Michael Robson,et al.  An O (T log T) Reduction from RAM Computations to Satisfiability , 1991, Theor. Comput. Sci..

[10]  Richard J. Lipton,et al.  Some connections between nonuniform and uniform complexity classes , 1980, STOC '80.

[11]  Emanuele Viola,et al.  On the Power of Small-Depth Computation , 2009, Found. Trends Theor. Comput. Sci..

[12]  Carsten Lund,et al.  Non-deterministic exponential time has two-prover interactive protocols , 2005, computational complexity.

[13]  Ryan Williams,et al.  Non-uniform ACC Circuit Lower Bounds , 2011, 2011 IEEE 26th Annual Conference on Computational Complexity.

[14]  Roman Smolensky,et al.  Algebraic methods in the theory of lower bounds for Boolean circuit complexity , 1987, STOC.

[15]  Johan Håstad,et al.  Almost optimal lower bounds for small depth circuits , 1986, STOC '86.

[16]  Uwe Schöning,et al.  A Probabilistic Algorithm for k -SAT Based on Limited Local Search and Restart , 2002, Algorithmica.

[17]  Lance Fortnow,et al.  Nonrelativizing separations , 1998, Proceedings. Thirteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat. No.98CB36247).

[18]  Ryan Williams,et al.  Improving exhaustive search implies superpolynomial lower bounds , 2010, STOC '10.

[19]  Dominik Scheder,et al.  A full derandomization of schöning's k-SAT algorithm , 2010, STOC.

[20]  Thomas Schwentick,et al.  The Power of the Middle Bit of a #P Function , 1995, J. Comput. Syst. Sci..

[21]  Michael E. Saks,et al.  An improved exponential-time algorithm for k-SAT , 2005, JACM.

[22]  David A. Mix Barrington,et al.  Bounded-width polynomial-size branching programs recognize exactly those languages in NC1 , 1986, STOC '86.

[23]  Richard J. Lipton,et al.  Time-space lower bounds for satisfiability , 2005, JACM.

[24]  Kristoffer Arnsfelt Hansen,et al.  A New Characterization of ACC0 and Probabilistic CC0 , 2009, computational complexity.

[25]  Richard Beigel,et al.  On ACC , 1994, computational complexity.

[26]  Avi Wigderson,et al.  In search of an easy witness: exponential time vs. probabilistic polynomial time , 2001, Proceedings 16th Annual IEEE Conference on Computational Complexity.

[27]  Miklós Ajtai,et al.  ∑11-Formulae on finite structures , 1983, Ann. Pure Appl. Log..

[28]  Evgeny Dantsin,et al.  Worst-Case Upper Bounds , 2009, Handbook of Satisfiability.

[29]  Russell Impagliazzo,et al.  A satisfiability algorithm for AC0 , 2012, ACM-SIAM Symposium on Discrete Algorithms.

[30]  Eric Allender,et al.  Circuit Complexity before the Dawn of the New Millennium , 1996, FSTTCS.

[31]  Timon Hertli,et al.  3-SAT Faster and Simpler - Unique-SAT Bounds for PPSZ Hold in General , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[32]  Russell Impagliazzo,et al.  The Complexity of Satisfiability of Small Depth Circuits , 2009, IWPEC.

[33]  Russell Impagliazzo,et al.  A satisfiability algorithm for AC0 , 2011, SODA.

[34]  Rainer Schuler,et al.  An algorithm for the satisfiability problem of formulas in conjunctive normal form , 2005, J. Algorithms.

[35]  Russell Impagliazzo,et al.  Derandomizing Polynomial Identity Tests Means Proving Circuit Lower Bounds , 2003, STOC '03.

[36]  Russell Impagliazzo,et al.  Complexity of kSAT , 2007 .

[37]  Guy N. Rothblum,et al.  A (de)constructive approach to program checking , 2008, STOC.

[38]  Stanislav Zák,et al.  A Turing Machine Time Hierarchy , 1983, Theor. Comput. Sci..

[39]  Eric Allender,et al.  A Uniform Circuit Lower Bound for the Permanent , 1994, SIAM J. Comput..

[40]  Neil Immerman,et al.  Sparse sets in NP-P: Exptime versus nexptime , 1983, STOC.

[41]  Russell Impagliazzo,et al.  A duality between clause width and clause density for SAT , 2006, 21st Annual IEEE Conference on Computational Complexity (CCC'06).

[42]  Manuel Blum,et al.  Designing programs that check their work , 1989, STOC '89.

[43]  Mihalis Yannakakis,et al.  A Note on Succinct Representations of Graphs , 1986, Inf. Control..

[44]  Andrew Chi-Chih Yao,et al.  ON ACC and threshold circuits , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[45]  Russell Impagliazzo,et al.  Complexity of k-SAT , 1999, Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317).

[46]  A. Razborov Lower bounds on the size of bounded depth circuits over a complete basis with logical addition , 1987 .

[47]  Michael J. Fischer,et al.  Separating Nondeterministic Time Complexity Classes , 1978, JACM.

[48]  A. Yao Separating the polynomial-time hierarchy by oracles , 1985 .