Hole filling in 3D volumetric objects

The construction of hole filling (or hole segmentation) method for 3D volumetric images is a new challenging issue in computer science. It needs a geometrical approach since from a topological point of view 3D holes (tunnels) are not well-delimited subsets of three dimensional space. In this paper, the authors propose an original, efficient, flexible algorithm of hole filling for volumetric objects. The algorithm has been tested on artificial objects and very complicated crack propagation tomography images. The qualitative results, quantitative results and features of proposed approach are presented in the paper. According to our knowledge it is the first algorithm of hole filling for volumetric objects.

[1]  Katsushi Ikeuchi,et al.  Hole Filling of a 3D Model by Flipping Signs of a Signed Distance Field in Adaptive Resolution , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Luc M. Vincent,et al.  Efficient computation of various types of skeletons , 1991, Medical Imaging.

[3]  Wim H. Hesselink,et al.  A General Algorithm for Computing Distance Transforms in Linear Time , 2000, ISMM.

[4]  David Coeurjolly,et al.  d-Dimensional Reverse Euclidean Distance Transformation and Euclidean Medial Axis Extraction in Optimal Time , 2003, DGCI.

[5]  Luc Vincent,et al.  Euclidean skeletons and conditional bisectors , 1992, Other Conferences.

[6]  Marc Alexa,et al.  Context-based surface completion , 2004, ACM Trans. Graph..

[7]  Michel Couprie,et al.  Discrete bisector function and Euclidean skeleton in 2D and 3D , 2007, Image Vis. Comput..

[8]  Robert B. Fisher,et al.  Three-Dimensional Surface Relief Completion Via Nonparametric Techniques , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Azriel Rosenfeld,et al.  Connectivity in Digital Pictures , 1970, JACM.

[10]  Jun-ichiro Toriwaki,et al.  New algorithms for euclidean distance transformation of an n-dimensional digitized picture with applications , 1994, Pattern Recognit..

[11]  Yongtae Jun,et al.  A piecewise hole filling algorithm in reverse engineering , 2005, Comput. Aided Des..

[12]  B. Ripley,et al.  Pattern Recognition , 1968, Nature.

[13]  Leonidas J. Guibas,et al.  Example-Based 3D Scan Completion , 2005 .

[14]  S. Osher,et al.  Fast surface reconstruction using the level set method , 2001, Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision.

[15]  Philip J. Withers,et al.  X-ray microtomographic observation of intergranular stress corrosion cracking in sensitised austenitic stainless steel , 2006 .

[16]  S. Stock Recent advances in X-ray microtomography applied to materials , 2008 .

[17]  Michel Couprie,et al.  Transformations topologiques discrètes , 2007 .

[18]  Steve Marschner,et al.  Filling holes in complex surfaces using volumetric diffusion , 2002, Proceedings. First International Symposium on 3D Data Processing Visualization and Transmission.

[19]  Gilles Bertrand,et al.  Simple points, topological numbers and geodesic neighborhoods in cubic grids , 1994, Pattern Recognit. Lett..

[20]  Reinhard Klein,et al.  Detail-Preserving Surface Inpainting , 2005, VAST.

[22]  Edouard Thiel,et al.  Exact medial axis with euclidean distance , 2005, Image Vis. Comput..

[23]  Hugues Talbot,et al.  Globally minimal surfaces by continuous maximal flows , 2003, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  W. Ludwig,et al.  X-ray diffraction contrast tomography: a novel technique for three-dimensional grain mapping of polycrystals. I. Direct beam case , 2008 .

[25]  Peter Liepa,et al.  Filling Holes in Meshes , 2003, Symposium on Geometry Processing.

[26]  Wei Zhao,et al.  A Robust Hole-Filling Algorithm for Triangular Mesh , 2007, CAD/Graphics.

[27]  E. R. Davies,et al.  Thinning algorithms: A critique and a new methodology , 1981, Pattern Recognit..

[28]  W. Ludwig,et al.  Observations of Intergranular Stress Corrosion Cracking in a Grain-Mapped Polycrystal , 2008, Science.

[29]  Alla Sheffer,et al.  Template-based mesh completion , 2005, SGP '05.

[30]  Andrew King,et al.  X-ray diffraction contrast tomography: a novel technique for three-dimensional grain mapping of polycrystals. II. The combined case , 2008 .

[31]  Michel Couprie,et al.  Discrete Bisector Function and Euclidean Skeleton , 2005, DGCI.

[32]  Azriel Rosenfeld,et al.  Digital topology: Introduction and survey , 1989, Comput. Vis. Graph. Image Process..

[33]  Grégoire Malandain,et al.  Euclidean skeletons , 1998, Image Vis. Comput..

[34]  Dominique Attali,et al.  Modeling noise for a better simplification of skeletons , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[35]  Marc Levoy,et al.  A volumetric method for building complex models from range images , 1996, SIGGRAPH.

[36]  Gabriel Taubin,et al.  The ball-pivoting algorithm for surface reconstruction , 1999, IEEE Transactions on Visualization and Computer Graphics.

[37]  Gilles Bertrand,et al.  A three-dimensional holes closing algorithm , 1996, Pattern Recognit. Lett..