Additively Homomorphic Encryption with d-Operand Multiplications

The search for encryption schemes that allow to evaluate functions (or circuits) over encrypted data has attracted a lot of attention since the seminal work on this subject by Rivest, Adleman and Dertouzos in 1978. In this work we define a theoretical object, chained encryption schemes, which allow an efficient evaluation of polynomials of degree d over encrypted data. Chained encryption schemes are generically constructed by concatenating cryptosystems with the appropriate homomorphic properties; such schemes are common in lattice-based cryptography. As a particular instantiation we propose a chained encryption scheme whose INDCPA security is based on a worst-case/average-case reduction from uSVP.

[1]  Gary L. Mullen,et al.  Finite Fields: Theory, Applications and Algorithms , 1994 .

[2]  Oded Regev,et al.  Lattice-Based Cryptography , 2006, CRYPTO.

[3]  Anat Paskin-Cherniavsky,et al.  Evaluating Branching Programs on Encrypted Data , 2007, TCC.

[4]  Ivan Damgård,et al.  A Length-Flexible Threshold Cryptosystem with Applications , 2003, ACISP.

[5]  Rainer Steinwandt,et al.  Cryptanalysis of Polly Cracker , 2002, IEEE Trans. Inf. Theory.

[6]  Oded Regev,et al.  On lattices, learning with errors, random linear codes, and cryptography , 2005, STOC '05.

[7]  Jung Hee Cheon,et al.  Known-plaintext cryptanalysis of the Domingo-Ferrer algebraic privacy homomorphism scheme , 2006, Inf. Process. Lett..

[8]  Gregory Neven,et al.  Private Policy Negotiation , 2006, Financial Cryptography.

[9]  Josep Domingo-Ferrer A New Privacy Homomorphism and Applications , 1996, Inf. Process. Lett..

[10]  Oded Regev,et al.  New lattice based cryptographic constructions , 2003, STOC '03.

[11]  Caroline Fontaine,et al.  A Survey of Homomorphic Encryption for Nonspecialists , 2007, EURASIP J. Inf. Secur..

[12]  Richard J. Lipton,et al.  Algorithms for Black-Box Fields and their Application to Cryptography (Extended Abstract) , 1996, CRYPTO.

[13]  Dima Grigoriev,et al.  Homomorphic Public-Key Cryptosystems and Encrypting Boolean Circuits , 2003, Applicable Algebra in Engineering, Communication and Computing.

[14]  Ben Adida,et al.  How to Shuffle in Public , 2007, TCC.

[15]  Doerte K. Rappe Homomorphic cryptosystems and their applications , 2005, IACR Cryptol. ePrint Arch..

[16]  Chris Peikert,et al.  Public-key cryptosystems from the worst-case shortest vector problem: extended abstract , 2009, STOC '09.

[17]  Qiang Tang,et al.  Extended Private Information Retrieval and Its Application in Biometrics Authentications , 2007, CANS.

[18]  Meena Mahajan,et al.  Polynomial Size Log Depth Circuits: Between NC1 and AC1 , 2007, Bull. EATCS.

[19]  Dan Boneh,et al.  Evaluating 2-DNF Formulas on Ciphertexts , 2005, TCC.

[20]  Ronald L. Rivest,et al.  ON DATA BANKS AND PRIVACY HOMOMORPHISMS , 1978 .

[21]  Adi Shamir,et al.  A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.

[22]  Philippe Gaborit,et al.  Lattice-based homomorphic encryption of vector spaces , 2008, 2008 IEEE International Symposium on Information Theory.

[23]  David A. Mix Barrington,et al.  Bounded-width polynomial-size branching programs recognize exactly those languages in NC1 , 1986, STOC '86.

[24]  Miklós Ajtai,et al.  Representing hard lattices with O(n log n) bits , 2005, STOC '05.

[25]  Craig Gentry,et al.  A fully homomorphic encryption scheme , 2009 .

[26]  Rafail Ostrovsky,et al.  Replication is not needed: single database, computationally-private information retrieval , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[27]  Craig Gentry,et al.  Fully homomorphic encryption using ideal lattices , 2009, STOC '09.

[28]  Craig Gentry,et al.  A Simple BGN-Type Cryptosystem from LWE , 2010, EUROCRYPT.

[29]  Phong Q. Nguyen Cryptanalysis of the Goldreich-Goldwasser-Halevi Cryptosystem from Crypto '97 , 1999, CRYPTO.

[30]  Josep Domingo-Ferrer,et al.  A Provably Secure Additive and Multiplicative Privacy Homomorphism , 2002, ISC.

[31]  Daniele Micciancio,et al.  On Bounded Distance Decoding, Unique Shortest Vectors, and the Minimum Distance Problem , 2009, CRYPTO.

[32]  Simon R. Blackburn,et al.  Cryptanalysis of a homomorphic public-key cryptosystem over a finite group , 2006, J. Math. Cryptol..

[33]  Helger Lipmaa,et al.  An Oblivious Transfer Protocol with Log-Squared Communication , 2005, ISC.

[34]  Aggelos Kiayias,et al.  Decoding of Interleaved Reed Solomon Codes over Noisy Data , 2003, ICALP.

[35]  David A. Wagner,et al.  Cryptanalysis of an Algebraic Privacy Homomorphism , 2003, ISC.

[36]  Moti Yung,et al.  Non-interactive cryptocomputing for NC/sup 1/ , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[37]  Keisuke Tanaka,et al.  Multi-bit Cryptosystems Based on Lattice Problems , 2007, Public Key Cryptography.

[38]  Pascal Paillier,et al.  Public-Key Cryptosystems Based on Composite Degree Residuosity Classes , 1999, EUROCRYPT.

[39]  J. Ferrer A new privacy homomorphism and applications , 1996 .

[40]  Madhu Sudan,et al.  Reconstructing curves in three (and higher) dimensional space from noisy data , 2003, STOC '03.

[41]  Ben Adida,et al.  Offline/Online Mixing , 2007, ICALP.

[42]  Frederik Vercauteren,et al.  Fully Homomorphic Encryption with Relatively Small Key and Ciphertext Sizes , 2010, Public Key Cryptography.

[43]  Andrew Chi-Chih Yao,et al.  How to generate and exchange secrets , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[44]  Frederik Armknecht,et al.  A New Approach for Algebraically Homomorphic Encryption , 2008, IACR Cryptol. ePrint Arch..

[45]  Joan Feigenbaum,et al.  Open Questions, Talk Abstracts, and Summary of Discussions , 1989, Distributed Computing And Cryptography.

[46]  Silvio Micali,et al.  Probabilistic Encryption , 1984, J. Comput. Syst. Sci..

[47]  Aggelos Kiayias,et al.  Secure Games with Polynomial Expressions , 2001, ICALP.

[48]  Oded Goldreich,et al.  Eliminating Decryption Errors in the Ajtai-Dwork Cryptosystem , 1997, Electron. Colloquium Comput. Complex..

[49]  Taher El Gamal A public key cryptosystem and a signature scheme based on discrete logarithms , 1984, IEEE Trans. Inf. Theory.

[50]  Craig Gentry,et al.  Fully Homomorphic Encryption over the Integers , 2010, EUROCRYPT.

[51]  Rafail Ostrovsky,et al.  Private Searching on Streaming Data , 2005, Journal of Cryptology.