Log-polar height maps for multiple range image registration

We propose a method for coarse registration of multiple range images that uses a log-polar height map (LPHM) as the key for establishing correspondence. The LPHM is a local height map orthogonally mapped on the tangent plane with the log-polar coordinate system. The input range images are roughly represented by signed distance field (SDF) samples. For each SDF sample, an LPHM is generated and is converted to an invariant feature vector. Point correspondence is established by a nearest neighbor search in feature space. The RANSAC algorithm is applied on the corresponding point pairs between each pair of range images, and the pairwise registration of input range images is determined by the extracted inlier point pairs. Finally, the global registration is determined by constructing a view tree, which is the spanning tree that maximizes the total number of inlier point pairs. The result of coarse registration is used as the initial state of the fine registration and modeling. The proposed method was tested on multiple real range image datasets.

[1]  David Fofi,et al.  A review of recent range image registration methods with accuracy evaluation , 2007, Image Vis. Comput..

[2]  Martial Hebert,et al.  Fully automatic registration of multiple 3D data sets , 2003, Image Vis. Comput..

[3]  Robert Bergevin,et al.  Towards a General Multi-View Registration Technique , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Francis Schmitt,et al.  Fast global registration of 3D sampled surfaces using a multi-z-buffer technique , 1999, Image Vis. Comput..

[5]  David S. Doermann,et al.  A parallel-line detection algorithm based on HMM decoding , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Robert B. Fisher,et al.  Estimating 3-D rigid body transformations: a comparison of four major algorithms , 1997, Machine Vision and Applications.

[7]  Andrew E. Johnson,et al.  Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Nasser Kehtarnavaz,et al.  A framework for estimation of motion parameters from range images , 1989, Comput. Vis. Graph. Image Process..

[9]  Kim L. Boyer,et al.  Precision range image registration using a robust surface interpenetration measure and enhanced genetic algorithms , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  George Wolberg,et al.  Image registration using log-polar mappings for recovery of large-scale similarity and projective transformations , 2005, IEEE Transactions on Image Processing.

[11]  Francois Blais,et al.  Range imaging sensors development at NRC Laboratories , 1989, [1989] Proceedings. Workshop on Interpretation of 3D Scenes.

[12]  Kiriakos N. Kutulakos,et al.  A Theory of Shape by Space Carving , 2000, International Journal of Computer Vision.

[13]  Robert J. Woodham,et al.  Photometric Stereo: A Reflectance Map Technique For Determining Surface Orientation From Image Intensity , 1979, Optics & Photonics.

[14]  Luc Van Gool,et al.  Automatic Crude Patch Registration: Toward Automatic 3D Model Building , 2002, Comput. Vis. Image Underst..

[15]  M. Takeda,et al.  Fourier transform profilometry for the automatic measurement of 3-D object shapes. , 1983, Applied optics.

[16]  G. Häusler,et al.  Light sectioning with large depth and high resolution. , 1988, Applied optics.

[17]  Takio Kurita,et al.  Scale Invariant Face Detection and Classification Method Using Shift Invariant Features Extracted from Log-Polar Image , 2001 .

[18]  Takeshi Masuda,et al.  Registration and Integration of Multiple Range Images by Matching Signed Distance Fields for Object Shape Modeling , 2002, Comput. Vis. Image Underst..

[19]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using unit quaternions , 1987 .

[20]  Kim L. Boyer,et al.  Color-Encoded Structured Light for Rapid Active Ranging , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Patrick J. Flynn,et al.  A Survey Of Free-Form Object Representation and Recognition Techniques , 2001, Comput. Vis. Image Underst..

[22]  Peter J. Rousseeuw,et al.  Robust regression and outlier detection , 1987 .

[23]  Katsushi Ikeuchi,et al.  Determining Surface Orientations of Specular Surfaces by Using the Photometric Stereo Method , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Gérard G. Medioni,et al.  Structural Indexing: Efficient 3-D Object Recognition , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Arthur R. Pope Model-Based Object Recognition - A Survey of Recent Research , 1994 .

[26]  M. Hebert,et al.  The Representation, Recognition, and Locating of 3-D Objects , 1986 .

[27]  Jan J. Koenderink,et al.  Solid shape , 1990 .

[28]  Jitendra Malik,et al.  Recognizing Objects in Range Data Using Regional Point Descriptors , 2004, ECCV.

[29]  Shree K. Nayar,et al.  Shape from Focus , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Takeo Kanade,et al.  A Multiple-Baseline Stereo , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Naokazu Yokoya,et al.  Range Image Segmentation Based on Differential Geometry: A Hybrid Approach , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  François Blais Review of 20 years of range sensor development , 2004, J. Electronic Imaging.

[33]  Marc Rioux,et al.  Direct Estimation of Range Flow on Deformable Shape From a Video Rate Range Camera , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  Johji Tajima,et al.  3-D data acquisition by Rainbow Range Finder , 1990, [1990] Proceedings. 10th International Conference on Pattern Recognition.

[36]  Robert Lange,et al.  3D time-of-flight distance measurement with custom solid-state image sensors in CMOS/CCD-technology , 2006 .

[37]  Hiroshi Murase,et al.  Visual learning and recognition of 3-d objects from appearance , 2005, International Journal of Computer Vision.

[38]  Paul J. Besl,et al.  Active, optical range imaging sensors , 1988, Machine Vision and Applications.

[39]  Katsushi Ikeuchi,et al.  Spherical Representations: for EGI to SAI , 1994, Object Representation in Computer Vision.

[40]  Joaquim Salvi,et al.  Pattern codification strategies in structured light systems , 2004, Pattern Recognit..

[41]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[42]  Daniel D. Morris,et al.  Factorization methods for structure from motion , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[43]  Ramesh C. Jain,et al.  Invariant surface characteristics for 3D object recognition in range images , 1985, Comput. Vis. Graph. Image Process..

[44]  Sebastian Thrun,et al.  Robotic mapping: a survey , 2003 .

[45]  Nicholas Ayache,et al.  Rigid, affine and locally affine registration of free-form surfaces , 1996, International Journal of Computer Vision.

[46]  John G. Harris,et al.  Rigid body motion from range image sequences , 1991, CVGIP Image Underst..

[47]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[48]  Andrew W. Fitzgibbon,et al.  An Experimental Comparison of Range Image Segmentation Algorithms , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[49]  Kari Pulli,et al.  Multiview registration for large data sets , 1999, Second International Conference on 3-D Digital Imaging and Modeling (Cat. No.PR00062).

[50]  S. Inokuchi,et al.  Three-dimensional surface measurement by space encoding range imaging , 1985 .

[51]  Chin Seng Chua,et al.  Point Signatures: A New Representation for 3D Object Recognition , 1997, International Journal of Computer Vision.

[52]  Peter Johannes Neugebauer,et al.  Reconstruction of Real-World Objects via Simultaneous Registration and Robust Combination of Multiple Range Images , 1997, Int. J. Shape Model..

[53]  Edoardo Charbon,et al.  A CMOS 3D camera with millimetric depth resolution , 2004, Proceedings of the IEEE 2004 Custom Integrated Circuits Conference (IEEE Cat. No.04CH37571).

[54]  Jake K. Aggarwal,et al.  Model-based object recognition in dense-range images—a review , 1993, CSUR.

[55]  V. Srinivasan,et al.  Automated phase-measuring profilometry of 3-D diffuse objects. , 1984, Applied optics.

[56]  Melvin H. Horman,et al.  An Application of Wavefront Reconstruction to Interferometry , 1965 .

[57]  Martial Hebert,et al.  Active laser radar for high-performance measurements , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[58]  Joaquim Salvi,et al.  Recent progress in coded structured light as a technique to solve the correspondence problem: a survey , 1998, Pattern Recognit..

[59]  Pavel Krsek,et al.  Differential Invariants as the Base of Triangulated Surface Registration , 2002, Comput. Vis. Image Underst..

[60]  Marc Levoy,et al.  Efficient variants of the ICP algorithm , 2001, Proceedings Third International Conference on 3-D Digital Imaging and Modeling.

[61]  John A. McLaughlin,et al.  Nth-Order Autocorrelations in Pattern Recognition , 1968, Inf. Control..

[62]  Takio Kurita,et al.  A New Scheme for Practical Flexible and Intelligent Vision Systems , 1988, MVA.

[63]  Kenichi Kanatani,et al.  Geometric computation for machine vision , 1993 .

[64]  Dimitris N. Metaxas,et al.  Dynamic 3D Models with Local and Global Deformations: Deformable Superquadrics , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[65]  Takeshi Masuda,et al.  Surface curvature estimation from the signed distance field , 2003, Fourth International Conference on 3-D Digital Imaging and Modeling, 2003. 3DIM 2003. Proceedings..

[66]  Frank Wolter,et al.  Exploring Artificial Intelligence in the New Millenium , 2002 .