Bridging observations, theory and numerical simulation of the ocean using machine learning

Progress within physical oceanography has been concurrent with the increasing sophistication of tools available for its study. The incorporation of machine learning (ML) techniques offers exciting possibilities for advancing the capacity and speed of established methods and for making substantial and serendipitous discoveries. Beyond vast amounts of complex data ubiquitous in many modern scientific fields, the study of the ocean poses a combination of unique challenges that ML can help address. The observational data available is largely spatially sparse, limited to the surface, and with few time series spanning more than a handful of decades. Important timescales span seconds to millennia, with strong scale interactions and numerical modelling efforts complicated by details such as coastlines. This review covers the current scientific insight offered by applying ML and points to where there is imminent potential. We cover the main three branches of the field: observations, theory, and numerical modelling. Highlighting both challenges and opportunities, we discuss both the historical context and salient ML tools. We focus on the use of ML in situ sampling and satellite observations, and the extent to which ML applications can advance theoretical oceanographic exploration, as well as aid numerical simulations. Applications that are also covered include model error and bias correction and current and potential use within data assimilation. While not without risk, there is great interest in the potential benefits of oceanographic ML applications; this review caters to this interest within the research community.

[1]  Patrick Gallinari,et al.  Deep learning for physical processes: incorporating prior scientific knowledge , 2017, ICLR.

[2]  A. Meijers,et al.  Unsupervised Clustering of Southern Ocean Argo Float Temperature Profiles , 2019, Journal of Geophysical Research: Oceans.

[3]  C. Bitz,et al.  A machine learning model of Arctic sea ice motions , 2020, 2108.10925.

[4]  Subimal Ghosh,et al.  Statistical downscaling of GCM simulations to streamflow using relevance vector machine , 2008 .

[5]  Carl Wunsch,et al.  An Eddy-Permitting Southern Ocean State Estimate , 2010 .

[6]  Andrew Gettelman,et al.  The Art and Science of Climate Model Tuning , 2017 .

[7]  Karthik Kashinath,et al.  Towards Physics-informed Deep Learning for Turbulent Flow Prediction , 2020, KDD.

[8]  E. Ott,et al.  Using machine learning to predict statistical properties of non-stationary dynamical processes: System climate,regime transitions, and the effect of stochasticity. , 2021, Chaos.

[9]  J. Brian Gray,et al.  Introduction to Linear Regression Analysis , 2002, Technometrics.

[10]  The Arctic Subpolar Gyre sTate Estimate: Description and Assessment of a Data‐Constrained, Dynamically Consistent Ocean‐Sea Ice Estimate for 2002–2017 , 2021, Journal of Advances in Modeling Earth Systems.

[11]  Russell G. Death,et al.  An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data , 2004 .

[12]  C. Wunsch Towards the World Ocean Circulation Experiment and a Bit of Aftermath , 2006 .

[13]  J. Namias Recent seasonal interactions between north Pacific waters and the overlying atmospheric circulation , 1959 .

[14]  V. Lyubchich,et al.  Estimating Oxygen in the Southern Ocean Using Argo Temperature and Salinity , 2018, Journal of Geophysical Research: Oceans.

[15]  HIDRA 1.0: Deep-Learning-Based Ensemble Sea Level Forecasting in the Northern Adriatic , 2020 .

[16]  Venkatramani Balaji,et al.  Can we obtain viable alternatives to Manning's equation using genetic programming? , 2016, Artif. Intell. Res..

[17]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[18]  Bettina K. Gier,et al.  Taking climate model evaluation to the next level , 2019, Nature Climate Change.

[19]  Lewis F. Richardson,et al.  Weather Prediction by Numerical Process , 1922 .

[20]  T. Yoshida,et al.  Strongly Coupled Data Assimilation in Multiscale Media: Experiments Using a Quasi‐Geostrophic Coupled Model , 2019, Journal of Advances in Modeling Earth Systems.

[21]  N. Wells,et al.  Ocean circulation and climate , 2002 .

[22]  Pierre Friedlingstein,et al.  Carbon Dioxide and Climate: Perspectives on a Scientific Assessment , 2013 .

[23]  A. N. Naveira Garabato A perspective on the future of physical oceanography , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[24]  Henry D. I. Abarbanel,et al.  Machine Learning: Deepest Learning as Statistical Data Assimilation Problems , 2017, Neural Computation.

[25]  Stephan Hoyer,et al.  Machine learning–accelerated computational fluid dynamics , 2021, Proceedings of the National Academy of Sciences.

[26]  A. Geer,et al.  Building Tangent‐Linear and Adjoint Models for Data Assimilation With Neural Networks , 2021 .

[27]  Lorena A. Barba,et al.  How Will the Fast Multipole Method Fare in the Exascale Era , 2013 .

[28]  Zhenya Song,et al.  Centuries of monthly and 3-hourly global ocean wave data for past, present, and future climate research , 2020, Scientific Data.

[29]  W. Hazeleger,et al.  Eddy subduction in a model of the subtropical gyre , 2000 .

[30]  Torsten Hoefler,et al.  Deep learning for post-processing ensemble weather forecasts , 2021, Philosophical Transactions of the Royal Society A.

[31]  Janet Sprintall,et al.  Southern Ocean mixed-layer depth from Argo float profiles , 2008 .

[32]  S. Griffies,et al.  Tracer Conservation with an Explicit Free Surface Method for z-Coordinate Ocean Models , 2001 .

[33]  Imme Ebert-Uphoff,et al.  Evaluation, Tuning, and Interpretation of Neural Networks for Working with Images in Meteorological Applications , 2020 .

[34]  GILBERT WALKER,et al.  World Weather , 1928, Nature.

[35]  B. Goswami,et al.  The IITM earth system model , 2015 .

[36]  C. Wunsch,et al.  ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation , 2015 .

[37]  Torsten Hoefler,et al.  The digital revolution of Earth-system science , 2021, Nature Computational Science.

[38]  Elizabeth A. Barnes,et al.  Identifying Opportunities for Skillful Weather Prediction with Interpretable Neural Networks , 2020, 2012.07830.

[39]  Stephanie Dutkiewicz,et al.  Elucidating ecological complexity: Unsupervised learning determines global marine eco-provinces , 2020, Science Advances.

[40]  Redouane Lguensat,et al.  Revealing the Impact of Global Heating on North Atlantic Circulation Using Transparent Machine Learning , 2021, Journal of Advances in Modeling Earth Systems.

[41]  Demis Hassabis,et al.  Mastering the game of Go without human knowledge , 2017, Nature.

[42]  Scott Reckinger,et al.  Principles and advances in subgrid modelling for eddy- rich simulations , 2014 .

[43]  Marc Bocquet,et al.  Combining data assimilation and machine learning to infer unresolved scale parametrization , 2020, Philosophical Transactions of the Royal Society A.

[44]  Noah D. Brenowitz,et al.  Interpreting and Stabilizing Machine-Learning Parametrizations of Convection , 2020, Journal of the Atmospheric Sciences.

[45]  Eric Greiner,et al.  The Mercator Ocean Global High‐Resolution Monitoring and Forecasting System , 2018, New Frontiers in Operational Oceanography.

[46]  Eric Guilyardi,et al.  Towards improved and more routine Earth system model evaluation in CMIP , 2016 .

[47]  J. Sallée,et al.  Defining Southern Ocean fronts and their influence on biological and physical processes in a changing climate , 2020, Nature Climate Change.

[48]  Alan Edelman,et al.  Oceananigans.jl: Fast and friendly geophysical fluid dynamics on GPUs , 2020, J. Open Source Softw..

[49]  K. Bryan,et al.  A Nonlinear Model of an Ocean Driven by Wind and Differential Heating: Part I. Description of the Three-Dimensional Velocity and Density Fields , 1968 .

[50]  F. Roquet,et al.  The Thermohaline Modes of the Global Ocean , 2019, Journal of Physical Oceanography.

[51]  P. N. Edwards A Vast Machine: Computer Models, Climate Data, and the Politics of Global Warming , 2010 .

[52]  David Anderson,et al.  Indicator Patterns of Forced Change Learned by an Artificial Neural Network , 2020, Journal of Advances in Modeling Earth Systems.

[53]  James C. McWilliams,et al.  On data-driven induction of the low-frequency variability in a coarse-resolution ocean model , 2020 .

[54]  R. Abernathey,et al.  Drivers of Local Ocean Heat Content Variability in ECCOv4 , 2020, Journal of Climate.

[55]  G. Manucharyan,et al.  A Deep Learning Approach to Spatiotemporal Sea Surface Height Interpolation and Estimation of Deep Currents in Geostrophic Ocean Turbulence , 2020, Journal of Advances in Modeling Earth Systems.

[56]  Exeter,et al.  Towards neural Earth system modelling by integrating artificial intelligence in Earth system science , 2021, Nature Machine Intelligence.

[57]  M. Deacon Scientists and the sea, 1650-1900 , 1971 .

[58]  Marc Bocquet,et al.  Data assimilation as a learning tool to infer ordinary differential equation representations of dynamical models , 2019, Nonlinear Processes in Geophysics.

[59]  Redouane Lguensat,et al.  The Analog Data Assimilation , 2017 .

[60]  P. Richardson On the history of meridional overturning circulation schematic diagrams , 2008 .

[61]  S. Manabe,et al.  Climate Calculations with a Combined Ocean-Atmosphere Model , 1969 .

[62]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[63]  H. V. D. Dool,et al.  Searching for analogues, how long must we wait? , 1994 .

[64]  Pierre Baldi,et al.  A Fortran-Keras Deep Learning Bridge for Scientific Computing , 2020, Sci. Program..

[65]  Chris Russell,et al.  Seasonal Arctic sea ice forecasting with probabilistic deep learning , 2021, Nature Communications.

[66]  Teuvo Kohonen,et al.  Self-organized formation of topologically correct feature maps , 2004, Biological Cybernetics.

[67]  L. Talley,et al.  Water Mass and Biogeochemical Variability in the Kerguelen Sector of the Southern Ocean: A Machine Learning Approach for a Mixing Hot Spot , 2020, Journal of Geophysical Research: Oceans.

[68]  Thomas Kaminski,et al.  Recipes for adjoint code construction , 1998, TOMS.

[69]  Jürgen Schmidhuber,et al.  Deep learning in neural networks: An overview , 2014, Neural Networks.

[70]  Erwan Scornet,et al.  A random forest guided tour , 2015, TEST.

[71]  Marc Bocquet,et al.  Combining data assimilation and machine learning to emulate a dynamical model from sparse and noisy observations: A case study with the Lorenz 96 model , 2020, J. Comput. Sci..

[72]  S. Brunton,et al.  Discovering governing equations from data by sparse identification of nonlinear dynamical systems , 2015, Proceedings of the National Academy of Sciences.

[73]  A. N. Garabato A perspective on the future of physical oceanography. , 2012, Philosophical transactions. Series A, Mathematical, physical, and engineering sciences.

[74]  P. Courtier,et al.  A strategy for operational implementation of 4D‐Var, using an incremental approach , 1994 .

[75]  C. Hill,et al.  Elucidating ecological complexity: Unsupervised learning determines global marine eco-provinces. , 2020, Science advances.

[76]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[77]  Alessandro Rigazzi,et al.  Using Machine Learning at Scale in HPC Simulations with SmartSim: An Application to Ocean Climate Modeling , 2021, ArXiv.

[78]  Edward N. Lorenz,et al.  The Slow Manifold—What Is It? , 1992 .

[79]  S. Thiria,et al.  A neural network approach for modeling nonlinear transfer functions: Application for wind retrieval from spaceborne scatterometer data , 1993 .

[80]  P. Nowack,et al.  Using machine learning to build temperature-based ozone parameterizations for climate sensitivity simulations , 2018, Environmental Research Letters.

[81]  James T. Kwok,et al.  Generalizing from a Few Examples , 2019, ACM Comput. Surv..

[82]  V. Bjerknes,et al.  Das Problem der Wettervorhersage, betrachtet vom Standpunkte der Mechanic und der Physik , 2008 .

[83]  Redouane Lguensat,et al.  Learning Generalized Quasi-Geostrophic Models Using Deep Neural Numerical Models , 2019, ArXiv.

[84]  E. Kalnay,et al.  C ○ 2007 The Authors , 2006 .

[85]  Luca Cinquini,et al.  Requirements for a global data infrastructure in support of CMIP6 , 2018, Geoscientific Model Development.

[86]  C. Wunsch Ocean observations and the climate forecast problem , 2002 .

[87]  Roland Doerffer,et al.  Neural network for emulation of an inverse model: operational derivation of Case II water properties from MERIS data , 1999 .

[88]  D. Cartwright On The Origins Of Knowledge Of The Sea Tides From Antiquity To The Thirteenth Century , 2001 .

[89]  P. Landschützer,et al.  Recent variability of the global ocean carbon sink , 2014 .

[90]  Cédric Jamet,et al.  Automatic classification of water-leaving radiance anomalies from global SeaWiFS imagery: Application to the detection of phytoplankton groups in open ocean waters. , 2014 .

[91]  M. Bethge,et al.  Shortcut learning in deep neural networks , 2020, Nature Machine Intelligence.

[92]  M. Cane,et al.  A Model El Niñ–Southern Oscillation , 1987 .

[93]  Noah D. Brenowitz,et al.  Prognostic Validation of a Neural Network Unified Physics Parameterization , 2018, Geophysical Research Letters.

[94]  Andrew Glaws,et al.  Adversarial super-resolution of climatological wind and solar data , 2020, Proceedings of the National Academy of Sciences.

[95]  C. Mejia,et al.  LSCE-FFNN-v1: a two-step neural network model for the reconstruction of surface ocean pCO2 over the global ocean , 2019, Geoscientific Model Development.

[96]  Norman A. Phillips,et al.  The general circulation of the atmosphere: A numerical experiment , 1956 .

[97]  Soukayna Mouatadid,et al.  WeatherBench: A Benchmark Data Set for Data‐Driven Weather Forecasting , 2020, Journal of Advances in Modeling Earth Systems.

[98]  Nils Wedi,et al.  Assessing the scales in numerical weather and climate predictions: will exascale be the rescue? , 2019, Philosophical Transactions of the Royal Society A.

[99]  M. Dettinger,et al.  The utility of daily large-scale climate data in the assessment of climate change impacts on daily streamflow in California , 2010 .

[100]  William W. Hsieh,et al.  Applying Neural Network Models to Prediction and Data Analysis in Meteorology and Oceanography. , 1998 .

[101]  Aida Alvera-Azcárate,et al.  DINCAE 1.0: a convolutional neural network with error estimates to reconstruct sea surface temperature satellite observations , 2020 .

[102]  Fleur Couvreux,et al.  Process‐Based Climate Model Development Harnessing Machine Learning: II. Model Calibration From Single Column to Global , 2020, Journal of Advances in Modeling Earth Systems.

[103]  G. Vecchi,et al.  On the Seasonal Forecasting of Regional Tropical Cyclone Activity , 2014 .

[104]  L. Zanna,et al.  Data‐Driven Equation Discovery of Ocean Mesoscale Closures , 2020, Geophysical Research Letters.

[105]  I. Grooms Analog ensemble data assimilation and a method for constructing analogs with variational autoencoders , 2020, Quarterly Journal of the Royal Meteorological Society.

[106]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[107]  Hiroyasu Hasumi,et al.  Ocean modeling in an eddying regime , 2008 .

[108]  L. Zanna,et al.  Data‐Driven Equation Discovery of Ocean Mesoscale Closures , 2020, Geophysical Research Letters.

[109]  Ali Ramadhan,et al.  Universal Differential Equations for Scientific Machine Learning , 2020, ArXiv.

[110]  Malte Müller,et al.  Calibration of sea ice drift forecasts using random forest algorithms , 2021, The Cryosphere.

[111]  Wojciech Samek,et al.  Methods for interpreting and understanding deep neural networks , 2017, Digit. Signal Process..

[112]  H. Sverdrup Wind-Driven Currents in a Baroclinic Ocean; with Application to the Equatorial Currents of the Eastern Pacific. , 1947, Proceedings of the National Academy of Sciences of the United States of America.

[113]  T. Barnett,et al.  Origins and Levels of Monthly and Seasonal Forecast Skill for United States Surface Air Temperatures Determined by Canonical Correlation Analysis , 1987 .

[114]  Marcin Chrust,et al.  Exploring the potential and limitations of weak‐constraint 4D‐Var , 2020, Quarterly Journal of the Royal Meteorological Society.

[115]  Andrew M. Stuart,et al.  Ensemble Kalman inversion: a derivative-free technique for machine learning tasks , 2018, Inverse Problems.

[116]  A. Montenegro,et al.  Using seafaring simulations and shortest-hop trajectories to model the prehistoric colonization of Remote Oceania , 2016, Proceedings of the National Academy of Sciences.

[117]  Matthew Chantry,et al.  Accelerating High-Resolution Weather Models with Deep-Learning Hardware , 2019, PASC.

[118]  Carl Wunsch,et al.  Unsupervised Learning Reveals Geography of Global Ocean Dynamical Regions , 2019, Earth and space science.

[119]  Joachim Denzler,et al.  Deep learning and process understanding for data-driven Earth system science , 2019, Nature.

[120]  David Duvenaud,et al.  Neural Ordinary Differential Equations , 2018, NeurIPS.

[121]  G. Madec NEMO ocean engine , 2008 .

[122]  Takemasa Miyoshi,et al.  A Review of Innovation-Based Methods to Jointly Estimate Model and Observation Error Covariance Matrices in Ensemble Data Assimilation , 2018 .

[123]  Catherine A. Smith,et al.  An Intercomparison of Methods for Finding Coupled Patterns in Climate Data , 1992 .

[124]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[125]  Jeong-Hwan Kim,et al.  Deep learning for multi-year ENSO forecasts , 2019, Nature.

[126]  Rossella Arcucci,et al.  Data Assimilation in the Latent Space of a Neural Network , 2020, ArXiv.

[127]  Chris H. Q. Ding,et al.  K-means clustering via principal component analysis , 2004, ICML.

[128]  J. Key,et al.  Tools for Atmospheric Radiative Transfer: Streamer and FluxNet. Revised , 1998 .

[129]  Cleveland Abbe THE PHYSICAL BASIS OF LONG-RANGE WEATHER FORECASTS1 , 1901 .

[130]  Peter Bauer,et al.  The quiet revolution of numerical weather prediction , 2015, Nature.

[131]  Geoffrey J. McLachlan,et al.  Mixture models : inference and applications to clustering , 1989 .

[132]  Carolina Gabarró,et al.  SMOS Semi-Empirical Ocean Forward Model Adjustment , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[133]  Milan Curcic,et al.  A parallel Fortran framework for neural networks and deep learning , 2019, FORF.

[134]  Brooks Paige,et al.  Sensitivity analysis of a data-driven model of ocean temperature , 2021 .

[135]  P. Eriksson,et al.  On the distinctiveness of observed oceanic raindrop distributions , 2019, Atmospheric Chemistry and Physics.

[136]  Hajime Yamaguchi,et al.  Artificial Neural Network for the Short-Term Prediction of Arctic Sea Ice Concentration , 2019, Remote. Sens..

[137]  Anita C. Faul,et al.  Defining Southern Ocean fronts using unsupervised classification , 2021, Ocean Science.

[138]  D. Olbers,et al.  Why western boundary currents are diffusive: A link between bottom pressure torque and bolus velocity , 2010 .

[139]  Dit-Yan Yeung,et al.  Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting , 2015, NIPS.

[140]  Jennifer G. Dy,et al.  Quantifying Uncertainty in Discrete-Continuous and Skewed Data with Bayesian Deep Learning , 2018, KDD.

[141]  G. Johnson,et al.  On the size of the Antarctic Circumpolar Current , 1989 .

[142]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction , 2018, ArXiv.

[143]  Ritabrata Dutta,et al.  TRU-NET: a deep learning approach to high resolution prediction of rainfall , 2020, Machine Learning.

[144]  P. O'Gorman,et al.  Using Machine Learning to Parameterize Moist Convection: Potential for Modeling of Climate, Climate Change, and Extreme Events , 2018, Journal of Advances in Modeling Earth Systems.

[145]  Peter R. Oke,et al.  Ocean Data Assimilation Systems for GODAE , 2009 .

[146]  Heikki Järvinen,et al.  Necessary conditions for algorithmic tuning of weather prediction models using OpenIFS as an example , 2020, Geoscientific Model Development.

[147]  Rich Caruana,et al.  Improving Data‐Driven Global Weather Prediction Using Deep Convolutional Neural Networks on a Cubed Sphere , 2020, Journal of Advances in Modeling Earth Systems.

[148]  L. Zanna,et al.  Stochastic Deep Learning parameterization of Ocean Momentum Forcing , 2021 .

[149]  Alberto Carrassi,et al.  Accounting for Model Error in Variational Data Assimilation: A Deterministic Formulation , 2010 .

[150]  Paul A. O'Gorman,et al.  Use of neural networks for stable, accurate and physically consistent parameterization of subgrid atmospheric processes with good performance at reduced precision , 2020 .

[151]  Amy McGovern,et al.  Making the Black Box More Transparent: Understanding the Physical Implications of Machine Learning , 2019, Bulletin of the American Meteorological Society.

[152]  G. Maze,et al.  A shift in the ocean circulation has warmed the subpolar North Atlantic Ocean since 2016 , 2021, Communications Earth & Environment.

[153]  V. Balaji Climbing down Charney’s ladder: machine learning and the post-Dennard era of computational climate science , 2020, Philosophical Transactions of the Royal Society A.

[154]  Peter D. Düben,et al.  Machine-Learned Preconditioners for Linear Solvers in Geophysical Fluid Flows , 2020, ArXiv.

[155]  Prabhat,et al.  Exascale Deep Learning for Climate Analytics , 2018, SC18: International Conference for High Performance Computing, Networking, Storage and Analysis.

[156]  Peter A. G. Watson,et al.  Applying Machine Learning to Improve Simulations of a Chaotic Dynamical System Using Empirical Error Correction , 2019, Journal of advances in modeling earth systems.

[157]  Tobias Gysi,et al.  STELLA: a domain-specific tool for structured grid methods in weather and climate models , 2015, SC15: International Conference for High Performance Computing, Networking, Storage and Analysis.

[158]  D. Lettenmaier,et al.  Hydrologic Implications of Dynamical and Statistical Approaches to Downscaling Climate Model Outputs , 2004 .

[159]  M. Ghil,et al.  Data assimilation in meteorology and oceanography , 1991 .

[160]  Pierre Baldi,et al.  Enforcing Analytic Constraints in Neural Networks Emulating Physical Systems. , 2019, Physical review letters.

[161]  Vagn Walfrid Ekman,et al.  On the influence of the earth's rotation on ocean-currents. , 1905 .

[162]  A. P. Siebesma,et al.  Climate goals and computing the future of clouds , 2017 .

[163]  Thomas Bolton,et al.  Applications of Deep Learning to Ocean Data Inference and Subgrid Parameterization , 2019, Journal of Advances in Modeling Earth Systems.

[164]  L. Zanna,et al.  Stochastic‐Deep Learning Parameterization of Ocean Momentum Forcing , 2021 .

[165]  Thomas Vandal,et al.  Intercomparison of machine learning methods for statistical downscaling: the case of daily and extreme precipitation , 2017, Theoretical and Applied Climatology.

[166]  Manuel Pulido,et al.  Model error covariance estimation in particle and ensemble Kalman filters using an online expectation-maximization algorithm , 2020 .

[167]  Daniel Livescu,et al.  Objective discovery of dominant dynamical processes with intelligible machine learning , 2021, ArXiv.

[168]  Alexander D'Amour,et al.  Underspecification Presents Challenges for Credibility in Modern Machine Learning , 2020, J. Mach. Learn. Res..

[169]  Csaba Szepesvári,et al.  Algorithms for Reinforcement Learning , 2010, Synthesis Lectures on Artificial Intelligence and Machine Learning.

[170]  Chris W. Hughes,et al.  Why Western Boundary Currents in Realistic Oceans are Inviscid: A Link between Form Stress and Bottom Pressure Torques , 2001 .

[171]  L. Boehme,et al.  Classifying Oceanographic Structures in the Amundsen Sea, Antarctica , 2021, Geophysical Research Letters.

[172]  Isaac M. Held,et al.  The Gap between Simulation and Understanding in Climate Modeling , 2005 .

[173]  F. Nebeker Calculating the weather : meteorology in the 20th century , 1997 .

[174]  A. Watson,et al.  Revised estimates of ocean-atmosphere CO2 flux are consistent with ocean carbon inventory , 2020, Nature Communications.

[175]  J. Sarmiento,et al.  Reassessing Southern Ocean Air‐Sea CO2 Flux Estimates With the Addition of Biogeochemical Float Observations , 2019, Global biogeochemical cycles.

[176]  Carl E. Rasmussen,et al.  In Advances in Neural Information Processing Systems , 2011 .

[177]  Ronan Fablet,et al.  Reconstructing Global Chlorophyll-a Variations Using a Non-linear Statistical Approach , 2020, Frontiers in Marine Science.

[178]  Pierre Gentine,et al.  Could Machine Learning Break the Convection Parameterization Deadlock? , 2018, Geophysical Research Letters.

[179]  Niraj Agarwal,et al.  A comparison of data-driven approaches to build low-dimensional ocean models , 2021 .

[180]  Jan Saynisch,et al.  Estimating global ocean heat content from tidal magnetic satellite observations , 2019, Scientific Reports.

[181]  Tim Palmer,et al.  Number Formats, Error Mitigation, and Scope for 16‐Bit Arithmetics in Weather and Climate Modeling Analyzed With a Shallow Water Model , 2020, Journal of advances in modeling earth systems.

[182]  R. Krishnan,et al.  Long‐Term Climate Simulations Using the IITM Earth System Model (IITM‐ESMv2) With Focus on the South Asian Monsoon , 2018 .

[183]  Bingni W. Brunton,et al.  Learning dominant physical processes with data-driven balance models , 2020, Nature Communications.

[184]  Laure Zanna,et al.  Optimisation of an idealised ocean model, stochastic parameterisation of sub-grid eddies , 2014, 1410.5722.

[185]  W. Munk,et al.  Note on the Dynamics of the Antarctic Circumpolar Current , 1951 .

[186]  Vladimir Vapnik,et al.  Support-vector networks , 2004, Machine Learning.

[187]  M. Deacon A History of Oceanography. (Book Reviews: Scientists and the Sea, 1650-1900. A Study of Marine Science) , 1971 .

[188]  Ana Cortés,et al.  How to use mixed precision in ocean models: exploring a potential reduction of numerical precision in NEMO 4.0 and ROMS 3.6 , 2019, Geoscientific Model Development.

[189]  M. Castellani Identification of eddies from sea surface temperature maps with neural networks , 2006 .

[190]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[191]  Necessary conditions for algorithmic tuning of weather prediction models using OpenIFS as an example , 2020 .

[192]  E. Lorenz Atmospheric Predictability as Revealed by Naturally Occurring Analogues , 1969 .

[193]  M. Mazloff,et al.  A data assimilating model for estimating Southern Ocean biogeochemistry , 2017 .

[194]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1989, Math. Control. Signals Syst..

[195]  Y. Kitade,et al.  Reversal of freshening trend of Antarctic Bottom Water in the Australian-Antarctic Basin during 2010s , 2020, Scientific Reports.

[196]  Moorthi,et al.  THE IITM EARTH SYSTEM MODEL Transformation of a Seasonal Prediction Model to a Long-Term Climate Model , 2015 .

[197]  Olivier Pannekoucke,et al.  Learning Variational Data Assimilation Models and Solvers , 2020, Journal of Advances in Modeling Earth Systems.

[198]  Andrew T. Wittenberg,et al.  Diagnosing Secular Variations in Retrospective ENSO Seasonal Forecast Skill Using CMIP5 Model‐Analogs , 2019, Geophysical Research Letters.

[199]  Walter Munk,et al.  ON THE WIND-DRIVEN OCEAN CIRCULATION , 1950 .

[200]  George Em Karniadakis,et al.  NSFnets (Navier-Stokes flow nets): Physics-informed neural networks for the incompressible Navier-Stokes equations , 2020, J. Comput. Phys..

[201]  Imme Ebert-Uphoff,et al.  Machine Learning for Clouds and Climate (Invited Chapter for the AGU Geophysical Monograph Series "Clouds and Climate") , 2021 .

[202]  Peter Bauer,et al.  Challenges and design choices for global weather and climate models based on machine learning , 2018, Geoscientific Model Development.

[203]  Alexander Binder,et al.  On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation , 2015, PloS one.

[204]  Veronika Eyring,et al.  Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization , 2015 .

[205]  Jean-Marie Beckers,et al.  Analysis of SMOS sea surface salinity data using DINEOF , 2016 .

[206]  Stephan Rasp,et al.  Neural networks for post-processing ensemble weather forecasts , 2018, Monthly Weather Review.

[207]  M. Kramer Nonlinear principal component analysis using autoassociative neural networks , 1991 .

[208]  Sepp Hochreiter,et al.  Untersuchungen zu dynamischen neuronalen Netzen , 1991 .

[209]  Simon Shackley,et al.  Adjusting to Policy Expectations in Climate Change Modeling , 1999 .

[210]  Jussi Leinonen,et al.  Stochastic Super-Resolution for Downscaling Time-Evolving Atmospheric Fields with a Generative Adversarial Network , 2020, ArXiv.

[211]  J. Beckers,et al.  DINCAE 1.0: a convolutional neural network with error estimates to reconstruct sea surface temperature satellite observations , 2019, Geoscientific Model Development.

[212]  Michael W. Mahoney,et al.  Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction , 2019, ArXiv.

[213]  Cynthia Rudin,et al.  Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead , 2018, Nature Machine Intelligence.

[214]  K. Bryan A Numerical Method for the Study of the Circulation of the World Ocean , 1997 .

[215]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[216]  Peter R. Oke,et al.  TOPAZ4: an ocean-sea ice data assimilation system for the North Atlantic and Arctic , 2012 .

[217]  Peter D. Düben,et al.  Benchmark Tests for Numerical Weather Forecasts on Inexact Hardware , 2014 .

[218]  Scott Lundberg,et al.  A Unified Approach to Interpreting Model Predictions , 2017, NIPS.

[219]  Christopher Chapman,et al.  Reconstruction of Subsurface Velocities From Satellite Observations Using Iterative Self-Organizing Maps , 2016, IEEE Geoscience and Remote Sensing Letters.

[220]  Carlos Guestrin,et al.  "Why Should I Trust You?": Explaining the Predictions of Any Classifier , 2016, ArXiv.

[221]  James D. Wilson,et al.  El Niño Detection Via Unsupervised Clustering of Argo Temperature Profiles , 2020 .

[222]  Hendrik L. Tolman,et al.  A Third-Generation Model for Wind Waves on Slowly Varying, Unsteady, and Inhomogeneous Depths and Currents , 1991 .

[223]  G. North,et al.  Empirical Orthogonal Functions: The Medium is the Message , 2009 .

[224]  Julia Ling,et al.  Machine learning strategies for systems with invariance properties , 2016, J. Comput. Phys..

[225]  Vipin Kumar,et al.  Integrating Physics-Based Modeling with Machine Learning: A Survey , 2020, ArXiv.

[226]  J. Tyndall VII. Note on the transmission of radiant heat through gaseous bodies , 1860, Proceedings of the Royal Society of London.

[227]  James Salter,et al.  Process‐Based Climate Model Development Harnessing Machine Learning: I. A Calibration Tool for Parameterization Improvement , 2020, Journal of Advances in Modeling Earth Systems.

[228]  Cédric Herzet,et al.  Bilinear residual Neural Network for the identification and forecasting of dynamical systems , 2017, ArXiv.

[229]  Neville Smith,et al.  GODAE The Global Ocean Data Assimilation Experiment , 2009 .

[230]  S. Goldman,et al.  A Vast Machine: Computer Models, Climate Data, and the Politics of Global Warming , 2011 .

[231]  Oliver R. A. Dunbar,et al.  Calibration and Uncertainty Quantification of Convective Parameters in an Idealized GCM , 2021 .

[232]  Paris Perdikaris,et al.  Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations , 2017, ArXiv.

[233]  G. Vallis Geophysical fluid dynamics: whence, whither and why? , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[234]  Pierre Gentine,et al.  Deep learning to represent subgrid processes in climate models , 2018, Proceedings of the National Academy of Sciences.

[235]  A. Geer,et al.  Learning earth system models from observations: machine learning or data assimilation? , 2021, Philosophical Transactions of the Royal Society A.

[236]  Rossella Arcucci,et al.  Attention-based Convolutional Autoencoders for 3D-Variational Data Assimilation , 2020, Computer Methods in Applied Mechanics and Engineering.

[237]  Wayne G. Leslie,et al.  Data assimilation and dynamical interpolation in GULFCAST experiments , 1989 .

[238]  S. Riser,et al.  The Argo Program : observing the global ocean with profiling floats , 2009 .

[239]  J. Lanzante,et al.  Evaluating the stationarity assumption in statistically downscaled climate projections: is past performance an indicator of future results? , 2016, Climatic Change.

[240]  Hod Lipson,et al.  Distilling Free-Form Natural Laws from Experimental Data , 2009, Science.

[241]  Andrea Klug,et al.  Numerical Methods For Fluid Dynamics With Applications To Geophysics , 2016 .

[242]  Giovanni Aloisio,et al.  CPMIP: measurements of real computational performance of Earth system models in CMIP6 , 2017 .

[243]  Deliang L. Chen,et al.  Empirical-Statistical Downscaling , 2008 .

[244]  G. Manucharyan,et al.  Deep learning to infer eddy heat fluxes from sea surface height patterns of mesoscale turbulence , 2019, Nature Communications.

[245]  S. Doney,et al.  Seascapes as a new vernacular for pelagic ocean monitoring, management and conservation , 2016 .

[246]  Ruslan M. Puscasu,et al.  Integration of Artificial Neural Networks into Operational Ocean Wave Prediction Models for Fast and Accurate Emulation of Exact Nonlinear Interactions , 2014, ICCS.

[247]  Syukuro Manabe,et al.  Transient responses of a coupled ocean-atmosphere model to gradual changes of atmospheric CO2 , 1991 .

[248]  Tapio Schneider,et al.  Calibrate, emulate, sample , 2020, J. Comput. Phys..

[249]  Philippe Lenca,et al.  Coherent heat patterns revealed by unsupervised classification of Argo temperature profiles in the North Atlantic Ocean , 2017 .

[250]  G. E. R. DEACON,et al.  Oceanography for Meteorologists , 1946, Nature.

[251]  G. Evensen,et al.  Data assimilation in the geosciences: An overview of methods, issues, and perspectives , 2017, WIREs Climate Change.

[252]  Patrick Laloyaux,et al.  Machine Learning for Model Error Inference and Correction , 2020 .

[253]  P. L. Traon,et al.  AN IMPROVED MAPPING METHOD OF MULTISATELLITE ALTIMETER DATA , 1998 .

[254]  T. Gneiting,et al.  Ensemble Model Output Statistics for Wind Vectors , 2012, 1201.2612.

[255]  P. Gent,et al.  Isopycnal mixing in ocean circulation models , 1990 .

[256]  T. Haine What did the Viking discoverers of America know of the North Atlantic Environment? , 2008 .

[257]  Christopher K. Wikle,et al.  Modern Statistical Methods in Oceanography: A Hierarchical Perspective , 2013, 1312.5904.

[258]  H. Stommel,et al.  The westward intensification of wind‐driven ocean currents , 1948 .

[259]  James C. McWilliams,et al.  Parameterization of Eddy Fluxes near Oceanic Boundaries , 2008 .

[260]  William W. Hsieh,et al.  Machine Learning Methods in the Environmental Sciences: Neural Networks and Kernels , 2009 .