Combining smart lighting and radio fingerprinting for improved indoor localization

This work proposes a hybrid indoor positioning system, which combines a minimal smart lighting deployment for Visible Light Positioning (VPL) purposes, with an IEEE 802.11 RSS Fingerprint-based Indoor Positioning System. Such a hybrid deployment improves the localization performance by utilizing the benefits of both the visible light and radio technologies. Improvement is demonstrated in terms of accuracy, coverage and processing requirements. At the same time, the deployment cost and complexity remains in affordable levels, due to the minimal deployment of the smart lighting system and the utilization of an existing IEEE 802.11 wireless network.

[1]  Hideo Makino,et al.  Indoor positioning using a high-speed, fish-eye lens-equipped camera in Visible Light Communication , 2013, International Conference on Indoor Positioning and Indoor Navigation.

[2]  Paul Kemppi,et al.  Database Correlation Method for Multi-System Positioning , 2006, 2006 IEEE 63rd Vehicular Technology Conference.

[3]  Kamalika Chaudhuri,et al.  Location determination of a mobile device using IEEE 802.11b access point signals , 2003, 2003 IEEE Wireless Communications and Networking, 2003. WCNC 2003..

[4]  Bart Nauwelaers,et al.  Optical CDMA codes for an indoor localization system using VLC , 2014, 2014 3rd International Workshop in Optical Wireless Communications (IWOW).

[5]  Paramvir Bahl,et al.  RADAR: an in-building RF-based user location and tracking system , 2000, Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064).

[6]  Min Chen,et al.  Enhanced Fingerprinting and Trajectory Prediction for IoT Localization in Smart Buildings , 2016, IEEE Transactions on Automation Science and Engineering.

[7]  T. Kurner,et al.  Calibration of an indoor radio propagation prediction model at 2.4 GHz by measurements of the IEEE 802.11b preamble , 2005, 2005 IEEE 61st Vehicular Technology Conference.

[8]  Christoforos Panayiotou,et al.  3D Ray Tracing for device-independent fingerprint-based positioning in WLANs , 2012, 2012 9th Workshop on Positioning, Navigation and Communication.

[9]  Badri N. Vellambi,et al.  Indoor Positioning System Using Visible Light and Accelerometer , 2014, Journal of Lightwave Technology.

[10]  Antonio Liotta,et al.  A wireless mesh communication protocol for smart-metering , 2012, 2012 International Conference on Computing, Networking and Communications (ICNC).

[11]  Simo Ali-Löytty,et al.  A comparative survey of WLAN location fingerprinting methods , 2009, 2009 6th Workshop on Positioning, Navigation and Communication.

[12]  François Marx,et al.  Map-aided indoor mobile positioning system using particle filter , 2005, IEEE Wireless Communications and Networking Conference, 2005.

[13]  Andrew G. Dempster,et al.  Indoor Positioning Techniques Based on Wireless LAN , 2007 .

[14]  Bart Nauwelaers,et al.  A survey on multiple access Visible Light Positioning , 2016, 2016 IEEE International Conference on Emerging Technologies and Innovative Business Practices for the Transformation of Societies (EmergiTech).

[15]  Mikkel Baun Kjærgaard,et al.  A Taxonomy for Radio Location Fingerprinting , 2007, LoCA.

[16]  Haiyun Luo,et al.  Zero-configuration indoor localization over IEEE 802.11 wireless infrastructure , 2010, Wirel. Networks.

[17]  Antonio Liotta,et al.  A topological insight into restricted Boltzmann machines , 2016, Machine Learning.

[18]  Joseph K. Ng,et al.  Enhanced Fingerprint-Based Location Estimation System in Wireless LAN Environment , 2007, EUC Workshops.

[19]  Guobin Shen,et al.  Walkie-Markie: Indoor Pathway Mapping Made Easy , 2013, NSDI.

[20]  Antonio Liotta,et al.  Intelligent control for adaptive video streaming , 2013, 2013 IEEE International Conference on Consumer Electronics (ICCE).

[21]  Prabal Dutta,et al.  Luxapose: indoor positioning with mobile phones and visible light , 2014, MobiCom.

[22]  Sang-Kook Han,et al.  An Indoor Visible Light Communication Positioning System Using a RF Carrier Allocation Technique , 2013, Journal of Lightwave Technology.

[23]  Klaithem Al Nuaimi,et al.  A survey of indoor positioning systems and algorithms , 2011, 2011 International Conference on Innovations in Information Technology.

[24]  Antonio Liotta,et al.  Improving RSS fingerprint-based localization using directional antennas , 2014, The 8th European Conference on Antennas and Propagation (EuCAP 2014).

[25]  Antonio Liotta,et al.  Impact of Transmission Power Control in multi-hop networks , 2017, Future Gener. Comput. Syst..

[26]  Venkata N. Padmanabhan,et al.  Indoor localization without the pain , 2010, MobiCom.

[27]  Antonio Liotta,et al.  plexi: Adaptive re-scheduling web-service of time synchronized low-power wireless networks , 2017, J. Netw. Comput. Appl..

[28]  Moustafa Youssef,et al.  The Horus WLAN location determination system , 2005, MobiSys '05.

[29]  Antonio Liotta,et al.  A survey on networks for smart-metering systems , 2012, Int. J. Pervasive Comput. Commun..

[30]  Antonio Liotta,et al.  Map-aided fingerprint-based indoor positioning , 2013, 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC).

[31]  Antonio Liotta,et al.  Ensembles of incremental learners to detect anomalies in ad hoc sensor networks , 2015, Ad Hoc Networks.

[32]  Giancarlo Fortino,et al.  Sample Size Determination Algorithm for fingerprint-based indoor localization systems , 2016, Comput. Networks.

[33]  Ki-Doo Kim,et al.  High precision indoor positioning using lighting LED and image sensor , 2011, 14th International Conference on Computer and Information Technology (ICCIT 2011).

[34]  Henry Tirri,et al.  A Probabilistic Approach to WLAN User Location Estimation , 2002, Int. J. Wirel. Inf. Networks.

[35]  Stavros Stavrou,et al.  Review of constitutive parameters of building materials , 2003 .

[36]  A. Liotta The cognitive NET is coming , 2013, IEEE Spectrum.