Experimental Study and Modeling of Group Retrieval in Ants as an Approach to Collective Transport in Swarm Robotic Systems

Group food retrieval in some ant species serves as a useful paradigm for multirobot collective transport strategies that are decentralized, scalable, and do not require a priori information about the payload. We present a comprehensive overview of group retrieval in ants and investigate this phenomenon in Aphaenogaster cockerelli in order to extract the ants' roles during transport, the rules that govern their actions, and the individual forces that they apply to guide a food item to their nest. To measure these forces, we fabricated elastic structures with calibrated stiffness properties, induced ants to retrieve the structures, and tracked the resulting deformations with a camera. We then developed a hybrid system model of the ant behaviors that were observed in the experiments. We conducted simulations of the behavioral model that incorporate a quasi-static model of planar manipulation with compliant attachment points. Our simulations qualitatively replicate individual ant activity as well as certain macroscopic features of the transport.

[1]  Nikolaus Correll,et al.  SwisTrack - a flexible open source tracking software for multi-agent systems , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[2]  Vijay Kumar,et al.  Decentralized Algorithms for Multi-Robot Manipulation via Caging , 2004, Int. J. Robotics Res..

[3]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[4]  Stephen C. Pratt,et al.  Recruitment and Other Communication Behavior in the Ponerine Ant Ectatomma ruidum , 2010 .

[5]  B. Hölldobler,et al.  Territorial Behavior in the Green Tree Ant (Oecophylla smaragdina) , 1983 .

[6]  B. Hölldobler,et al.  Recruitment and food-retrieving behavior in Novomessor (Formicidae, Hymenoptera) , 1978, Behavioral Ecology and Sociobiology.

[7]  Michael Shomin,et al.  Cooperative Quasi-Static Planar Manipulation With Multiple Robots , 2010 .

[8]  Mandyam V. Srinivasan,et al.  Path integration in insects , 2003 .

[9]  PHEIDOLE CRASSINODA,et al.  THE TRANSPORT OF PREY BY AN ANT, , .

[10]  Matthew Collett,et al.  Path integration in insects , 2000, Current Opinion in Neurobiology.

[11]  Spring Berman,et al.  Stochastic strategies for a swarm robotic assembly system , 2009, 2009 IEEE International Conference on Robotics and Automation.

[12]  J H Sudd The transport of prey by ants. , 1965, Behaviour.

[13]  J. Deneubourg,et al.  Scavenging by Pheidole pallidula a key for understanding decision-making systems in ants , 1997, Animal Behaviour.

[14]  John T. Wen,et al.  Decentralized Collaborative Load Transport by Multiple Robots , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[15]  Vijay R. Kumar,et al.  Force distribution in closed kinematic chains , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[16]  R. Chauvin,et al.  Sur le transport collectif des proies parFormica polyctena , 2005, Insectes Sociaux.

[17]  W. Gotwald,et al.  Predatory Behavior and Food Preferences of Driver Ants in Selected African Habitats , 1974 .

[18]  Vijay Kumar,et al.  Composition of Vector Fields for Multi-Robot Manipulation via Caging , 2007, Robotics: Science and Systems.

[19]  N. R Franks,et al.  Convergent evolution, superefficient teams and tempo in Old and New World army ants , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[20]  Alcherio Martinoli,et al.  Efficiency and robustness of threshold-based distributed allocation algorithms in multi-agent systems , 2002, AAMAS '02.

[21]  Vijay R. Kumar,et al.  Decentralized Algorithms for Multirobot Manipulation via Caging , 2002, WAFR.

[22]  Nigel R Franks,et al.  Caste evolution and ecology: a special worker for novel prey , 2005, Proceedings of the Royal Society B: Biological Sciences.

[23]  Eric Bonabeau,et al.  Cooperative transport by ants and robots , 2000, Robotics Auton. Syst..

[24]  Nidhi Kalra,et al.  Market-Based Multirobot Coordination: A Survey and Analysis , 2006, Proceedings of the IEEE.

[25]  Paul Graham,et al.  Route learning by insects , 2003, Current Opinion in Neurobiology.

[26]  H. Markl,et al.  Recruitment and food-retrieving behavior in Novomessor (Formicidae, Hymenoptera) , 1978, Behavioral Ecology and Sociobiology.

[27]  J. H. Sudd The Transport of Prey By Ants , 1965 .

[28]  Oussama Khatib,et al.  Coordination and decentralized cooperation of multiple mobile manipulators , 1996, J. Field Robotics.

[29]  Reid G. Simmons,et al.  First Results in the Coordination of Heterogeneous Robots for Large-Scale Assembly , 2000, ISER.

[30]  James F. A. Traniello,et al.  Resource Assessment, Recruitment Behavior, and Organization of Cooperative Prey Retrieval in the Ant Formica schaufussi (Hymenoptera: Formicidae) , 2004, Journal of Insect Behavior.

[31]  F. Ratnieks,et al.  Simple rules result in the adaptive turning of food items to reduce drag during cooperative food transport in the ant Pheidole oxyops , 2010, Insectes Sociaux.

[32]  J. H. Sudd The Transport of Prey By an Ant, Pheidole Crassinoda Em , 1960 .

[33]  Jonathan Fink,et al.  Cooperative Towing With Multiple Robots , 2008 .

[34]  H. Su DECENTRALIZED DYNAMIC CONTROL OF A NONHOLONOMIC MOBILE MANIPULATOR COLLECTIVE : A SIMULATION STUDY , 2008 .

[35]  Carl Anderson,et al.  Division of labour within teams of New World and Old World army ants , 2001, Animal Behaviour.

[36]  Robert Bogue Swarm intelligence and robotics , 2008, Ind. Robot.

[37]  M. Nielsen,et al.  Effect of Load Carriage on the Respiratory Metabolism of Running Worker Ants of Camponotus herculeanus (Formicidae) , 1982 .

[38]  Vijay Kumar,et al.  Architecture, Abstractions, and Algorithms for Controlling Large Teams of Robots: Experimental Testbed and Results , 2007, ISRR.

[39]  Alcherio Martinoli,et al.  Macroscopic Modeling of Aggregation Experiments using Embodied Agents in Teams of Constant and Time-Varying Sizes , 2004, Auton. Robots.

[40]  Marco Dorigo,et al.  Division of labor in a group of robots inspired by ants' foraging behavior , 2006, TAAS.

[41]  R. Chauvin,et al.  Le Transport Des Proies Chez Les Fourmis. Y-a-T-Il Entr'Aide? , 1950 .

[42]  Isao Shimoyama,et al.  Dynamics of self-assembling systems: Analogy with chemical kinetics , 1994 .

[43]  Mark W. Moffett,et al.  Notes on the Behavior of the Dimorphic Ant Oligomyrmex Overbecki (Hymenoptera: Formicidae) , 1986 .

[44]  James F. A. Traniello,et al.  Social organization and foraging success in Lasius neoniger (Hymenoptera: Formicidae): behavioral and ecological aspects of recruitment communication , 1983, Oecologia.

[45]  John T. Wen,et al.  Motion coordination through cooperative payload transport , 2009, 2009 American Control Conference.

[46]  HosokawaKazuo,et al.  Dynamics of self-assembling systems , 1994 .

[47]  Spring Berman,et al.  Optimized Stochastic Policies for Task Allocation in Swarms of Robots , 2009, IEEE Transactions on Robotics.

[48]  Spring Berman,et al.  Study of group food retrieval by ants as a model for multi-robot collective transport strategies , 2010, Robotics: Science and Systems.

[49]  R. Matthews,et al.  Ants. , 1898, Science.

[50]  Radhika Nagpal,et al.  Three-Dimensional Construction with Mobile Robots and Modular Blocks , 2008, Int. J. Robotics Res..

[51]  Kristina Lerman,et al.  Analysis of Dynamic Task Allocation in Multi-Robot Systems , 2006, Int. J. Robotics Res..

[52]  E. Klavins,et al.  Programmable Self-Assembly , 2007, IEEE Control Systems.

[53]  Vijay R. Kumar,et al.  Force distribution in closed kinematic chains , 1988, IEEE J. Robotics Autom..

[54]  W. Marsden I and J , 2012 .

[55]  B. Hölldobler,et al.  Communication During Foraging and Nest‐Relocation in the African Stink Ant, Paltothyreus tarsatus Fabr. (Hymenoptera, Formicidae, Ponerinae) , 2010 .

[56]  Barbara Webb,et al.  Swarm Intelligence: From Natural to Artificial Systems , 2002, Connect. Sci..

[57]  OLIGOMYRMEX OVERBECKP NOTES ON THE BEHAVIOR OF THE DIMORPHIC ANT , 2006 .

[58]  Isao Shimoyama,et al.  Dynamics of Self-Assembling Systems: Analogy with Chemical Kinetics , 1994, Artificial Life.

[59]  Vijay Kumar,et al.  Experimental Testbed for Large Multirobot Teams , 2008, IEEE Robotics Autom. Mag..

[60]  Ji Hao Hoo,et al.  Catalyst enhanced micro scale batch assembly , 2008, 2008 IEEE 21st International Conference on Micro Electro Mechanical Systems.

[61]  Venkat Krovi,et al.  Decentralized Dynamic Control of a Nonholonomic Mobile Manipulator Collective: A Simulation Study , 2008 .

[62]  C. Agbogba,et al.  Observations sur le comportement de marche en tandem chez deux espèces de fourmis ponérines:Mesoponera caffraria (smith) ethypoponera SP. (Hym. formicidae) , 1984, Insectes Sociaux.

[63]  Dong Sun,et al.  Manipulating rigid payloads with multiple robots using compliant grippers , 2002 .

[64]  Laurent Keller,et al.  Ant-like task allocation and recruitment in cooperative robots , 2000, Nature.

[65]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[66]  S. Beshers,et al.  Maximization of foraging efficiency and resource defense by group retrieval in the ant Formica schaufussi , 1991, Behavioral Ecology and Sociobiology.

[67]  Kosei Kitagaki,et al.  Decentralized adaptive control of multiple manipulators in co-operations , 1997 .

[68]  N. Franks Teams in social insects: group retrieval of prey by army ants (Eciton burchelli, Hymenoptera: Formicidae) , 1986, Behavioral Ecology and Sociobiology.