Weighted Linear Dynamic Logic

We introduce a weighted linear dynamic logic (weighted LDL for short) and show the expressive equivalence of its formulas to weighted rational expressions. This adds a new characterization for recognizable series to the fundamental Sch\"utzenberger theorem. Surprisingly, the equivalence does not require any restriction to our weighted LDL. Our results hold over arbitrary (resp. totally complete) semirings for finite (resp. infinite) words. As a consequence, the equivalence problem for weighted LDL formulas over fields is decidable in doubly exponential time. In contrast to classical logics, we show that our weighted LDL is expressively incomparable to weighted LTL for finite words. We determine a fragment of the weighted LTL such that series over finite and infinite words definable by LTL formulas in this fragment are definable also by weighted LDL formulas.

[1]  Manfred Droste,et al.  Weighted automata and multi-valued logics over arbitrary bounded lattices , 2012, Theor. Comput. Sci..

[2]  Jean Berstel,et al.  Rational series and their languages , 1988, EATCS monographs on theoretical computer science.

[3]  Manfred Droste,et al.  Multi-Valued MSO Logics OverWords and Trees , 2008, Fundam. Informaticae.

[4]  Paul Gastin,et al.  First-order definable languages , 2008, Logic and Automata.

[5]  Werner Kuich,et al.  Semirings and Formal Power Series: Their Relevance to Formal Languages and Automata , 1997, Handbook of Formal Languages.

[6]  Paul Gastin,et al.  A unifying survey on weighted logics and weighted automata , 2018, Soft Comput..

[7]  Manfred Droste,et al.  Weighted automata and weighted MSO logics for average and long-time behaviors , 2012, Inf. Comput..

[8]  Manfred Droste,et al.  Weighted automata , 2012 .

[9]  Lydia E. Kavraki,et al.  This Time the Robot Settles for a Cost: A Quantitative Approach to Temporal Logic Planning with Partial Satisfaction , 2015, AAAI.

[10]  Eleni Mandrali,et al.  Weighted First-Order Logics over Semirings , 2015, Acta Cybern..

[11]  Orna Kupferman,et al.  Discounting in LTL , 2014, TACAS.

[12]  Giuseppe De Giacomo,et al.  Synthesis for LTL and LDL on Finite Traces , 2015, IJCAI.

[13]  Wolfgang Thomas,et al.  Automata on Infinite Objects , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[14]  Giuseppe De Giacomo,et al.  Linear Temporal Logic and Linear Dynamic Logic on Finite Traces , 2013, IJCAI.

[15]  Kim G. Larsen,et al.  Alternation-Free Weighted Mu-Calculus: Decidability and Completeness , 2015, MFPS.

[16]  Marcel Paul Schützenberger,et al.  On the Definition of a Family of Automata , 1961, Inf. Control..

[17]  Salvatore La Torre,et al.  Proceedings of Second International Symposium on Games, Automata, Logics and Formal Verification, GandALF 2011. Electronic Proceedings in Theoretical Computer Science , 2011 .

[18]  Orna Kupferman,et al.  Lattice Automata , 2007, VMCAI.

[19]  M. Schützenberger On a Theorem of R. Jungen , 1962 .

[20]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[21]  Anca Muscholl,et al.  A Note on the Commutative Closure of Star-Free Languages , 1996, Inf. Process. Lett..

[22]  W. Kuich,et al.  On Iteration Semiring-Semimodule Pairs , 2007 .

[23]  Bernhard Beckert,et al.  Dynamic Logic , 2007, The KeY Approach.

[24]  Christel Baier,et al.  Principles of model checking , 2008 .

[25]  Eleni Mandrali,et al.  Weighted computability with discounting , 2013 .

[26]  M. Raj Mohan,et al.  Averaging in LTL , 2014, CONCUR.

[27]  M. Droste,et al.  Handbook of Weighted Automata , 2009 .

[28]  Eleni Mandrali,et al.  On weighted first-order logics with discounting , 2013, Acta Informatica.

[29]  Ingmar Meinecke,et al.  A Weighted µ-Calculus on Words , 2009, Developments in Language Theory.

[30]  Paul Gastin,et al.  Weighted automata and weighted logics , 2005, Theor. Comput. Sci..

[31]  Manfred Droste,et al.  Weighted Automata and Regular Expressions over Valuation Monoids , 2011, Int. J. Found. Comput. Sci..

[32]  Orna Kupferman,et al.  Formally Reasoning About Quality , 2016, J. ACM.

[33]  J. Sakarovitch Rational and Recognisable Power Series , 2009 .

[34]  Krishnendu Chatterjee,et al.  Quantitative languages , 2008, TOCL.

[35]  Martin Zimmermann,et al.  Parametric Linear Dynamic Logic , 2014, GandALF.