Relationship between the Ocular Dominance and Orientation Maps in Visual Cortex of Monocularly Deprived Cats

[1]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[2]  D. Hubel,et al.  SINGLE-CELL RESPONSES IN STRIATE CORTEX OF KITTENS DEPRIVED OF VISION IN ONE EYE. , 1963, Journal of neurophysiology.

[3]  D. Hubel,et al.  Anatomical Demonstration of Columns in the Monkey Striate Cortex , 1969, Nature.

[4]  D. Hubel,et al.  The period of susceptibility to the physiological effects of unilateral eye closure in kittens , 1970, The Journal of physiology.

[5]  D. Hubel,et al.  Sequence regularity and geometry of orientation columns in the monkey striate cortex , 1974, The Journal of comparative neurology.

[6]  C. Gilbert,et al.  Laminar patterns of geniculocortical projection in the cat , 1976, Brain Research.

[7]  S. Sherman,et al.  Visual discriminations during eyelid closure in the cat , 1977, Brain Research.

[8]  P. D. Spear,et al.  Striate cortex neurons of binocularly deprived kittens respond to visual stimuli through the closed eyelids , 1978, Brain Research.

[9]  D. Hubel,et al.  Anatomical demonstration of orientation columns in macaque monkey , 1978, The Journal of comparative neurology.

[10]  M. Stryker,et al.  Ocular dominance in layer IV of the cat's visual cortex and the effects of monocular deprivation. , 1978, The Journal of physiology.

[11]  P. D. Spear,et al.  Age-related changes in effects of monocular deprivation on cat striate cortex neurons. , 1980, Journal of neurophysiology.

[12]  S. Sherman,et al.  Organization of visual pathways in normal and visually deprived cats. , 1982, Physiological reviews.

[13]  D. Hubel,et al.  Thalamic inputs to cytochrome oxidase-rich regions in monkey visual cortex. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[14]  G. Blasdel,et al.  Voltage-sensitive dyes reveal a modular organization in monkey striate cortex , 1986, Nature.

[15]  T. Wiesel,et al.  Functional architecture of cortex revealed by optical imaging of intrinsic signals , 1986, Nature.

[16]  R. C. Van Sluyters,et al.  The overall pattern of ocular dominance bands in cat visual cortex , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  M. Stryker,et al.  Neural plasticity without postsynaptic action potentials: less-active inputs become dominant when kitten visual cortical cells are pharmacologically inhibited. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[18]  K. Miller,et al.  Ocular dominance column development: analysis and simulation. , 1989, Science.

[19]  Ina Ruck,et al.  USA , 1969, The Lancet.

[20]  M. Stryker,et al.  Relation of cortical cell orientation selectivity to alignment of receptive fields of the geniculocortical afferents that arborize within a single orientation column in ferret visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  Amiram Grinvald,et al.  Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns , 1991, Nature.

[22]  G. Blasdel,et al.  Differential imaging of ocular dominance and orientation selectivity in monkey striate cortex , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[23]  A. Grinvald,et al.  Relationships between orientation-preference pinwheels, cytochrome oxidase blobs, and ocular-dominance columns in primate striate cortex. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[24]  A. Grinvald,et al.  The layout of iso-orientation domains in area 18 of cat visual cortex: optical imaging reveals a pinwheel-like organization , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[25]  M. Cynader,et al.  An interdigitated columnar mosaic of cytochrome oxidase, zinc, and neurotransmitter-related molecules in cat and monkey visual cortex. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[26]  K. Obermayer,et al.  Geometry of orientation and ocular dominance columns in monkey striate cortex , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[27]  T. Yoshioka,et al.  A neurochemically distinct third channel in the macaque dorsal lateral geniculate nucleus. , 1994, Science.

[28]  T. Bonhoeffer,et al.  Reverse occlusion leads to a precise restoration of orientation preference maps in visual cortex , 1994, Nature.

[29]  R C Van Sluyters,et al.  Cytochrome-oxidase blobs in cat primary visual cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  Tobias Bonhoeffer,et al.  Development of identical orientation maps for two eyes without common visual experience , 1996, Nature.

[31]  J. Boyd,et al.  Laminar and columnar patterns of geniculocortical projections in the cat: Relationship to cytochrome oxidase , 1996, The Journal of comparative neurology.

[32]  T Bonhoeffer,et al.  Orientation selectivity in pinwheel centers in cat striate cortex. , 1997, Science.

[33]  A. Grinvald,et al.  Spatio–temporal frequency domains and their relation to cytochrome oxidase staining in cat visual cortex , 1997, Nature.

[34]  M. Stryker,et al.  Ocular dominance peaks at pinwheel center singularities of the orientation map in cat visual cortex. , 1997, Journal of neurophysiology.

[35]  J. Horton,et al.  Timing of the Critical Period for Plasticity of Ocular Dominance Columns in Macaque Striate Cortex , 1997, The Journal of Neuroscience.