Classification Using Set-Valued Kalman Filtering and Levi's Decision Theory

We consider the problem of using Levi's expected epistemic decision theory for classification when the hypotheses are of different informational values, conditioned on convex sets obtained from a set-valued Kalman filter. The background of epistemic utility decision theory with convex probabilities is outlined and a brief introduction to set-valued estimation is given. The decision theory is applied to a classifier in a multiple-target tracking scenario. A new probability density, appropriate for classification using the ratio of intensities, is introduced. >

[1]  Guillermo Rodríguez-Ortiz,et al.  Recursive forward dynamics for multiple robot arms moving a common task object , 1989, IEEE Trans. Robotics Autom..

[2]  David Middleton,et al.  Simultaneous optimum detection and estimation of signals in noise , 1968, IEEE Trans. Inf. Theory.

[3]  Scott McMillan,et al.  Toward super-real-time simulation of robotic mechanisms using a parallel integration method , 1992, IEEE Trans. Syst. Man Cybern..

[4]  David E. Orin,et al.  Parallel Algorithms for Computation of the Manipulator Inertia Matrix , 1991, Int. J. Robotics Res..

[5]  C. S. George Lee,et al.  Efficient parallel algorithms for robot forward dynamics computation , 1988, IEEE Trans. Syst. Man Cybern..

[6]  R. Featherstone The Calculation of Robot Dynamics Using Articulated-Body Inertias , 1983 .

[7]  David E. Orin,et al.  A Hierarchically Structured System for Computer Control of a Hexapod Walking Machine , 1985 .

[8]  David E. Orin,et al.  Efficient dynamic simulation of a single closed chain manipulator , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[9]  Martin Otter,et al.  A very efficient algorithm for the simulation of robots and similar multibody systems without invers , 1986 .

[10]  C. S. George Lee,et al.  Efficient Parallel Algorithm for Robot Inverse Dynamics Computation , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[11]  K. W. Lilly,et al.  Efficient Dynamic Simulation of Multiple Chain Robotic Mechanisms , 1994 .

[12]  Abhinandan Jain,et al.  A Spatial Operator Algebra for Manipulator Modeling and Control , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[13]  Darryl Morrell,et al.  Convex Bayes decision theory , 1991, IEEE Trans. Syst. Man Cybern..

[14]  Y. F. Zheng,et al.  Dynamic and kinetic behavior of two coordinating robots in assembly , 1989 .

[15]  Oussama Khatib,et al.  A unified approach for motion and force control of robot manipulators: The operational space formulation , 1987, IEEE J. Robotics Autom..

[16]  Samad Hayati Dynamical modelling of coordinated multiple robot systems , 1987 .

[17]  Darryl Morrell,et al.  Set-values filtering and smoothing , 1991, IEEE Trans. Syst. Man Cybern..

[18]  Darryl Morrell Epistemic utility estimation , 1993, IEEE Trans. Syst. Man Cybern..

[19]  H. Vincent Poor,et al.  An Introduction to Signal Detection and Estimation , 1994, Springer Texts in Electrical Engineering.

[20]  Richard A. Volz,et al.  Tele-autonomous systems: Methods and architectures for intermingling autonomous and telerobotic technology , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[21]  Antal K. Bejczy,et al.  Techniques for Parallel Computation of Mechanical Manipulator Dynamics. Part II: Forward Dynamics , 1991 .

[22]  Nageswara S. V. Rao,et al.  N-learners Problem: Fusion Of Concepts , 1992, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.

[23]  P. Bickel,et al.  Mathematical Statistics: Basic Ideas and Selected Topics , 1977 .

[24]  David E. Orin,et al.  Efficient O(N) computation of the operational space inertia matrix , 1990, Proceedings., IEEE International Conference on Robotics and Automation.