Sequential Monte Carlo Methods in Practice

Monte Carlo methods are revolutionizing the on-line analysis of data in fields as diverse as financial modeling, target tracking and computer vision. These methods, appearing under the names of bootstrap filters, condensation, optimal Monte Carlo filters, particle filters and survival of the fittest, have made it possible to solve numerically many complex, non-standard problems that were previously intractable. This book presents the first comprehensive treatment of these techniques, including convergence results and applications to tracking, guidance, automated target recognition, aircraft navigation, robot navigation, econometrics, financial modeling, neural networks, optimal control, optimal filtering, communications, reinforcement learning, signal enhancement, model averaging and selection, computer vision, semiconductor design, population biology, dynamic Bayesian networks, and time series analysis. This will be of great value to students, researchers and practitioners, who have some basic knowledge of probability. Arnaud Doucet received the Ph. D. degree from the University of Paris-XI Orsay in 1997. From 1998 to 2000, he conducted research at the Signal Processing Group of Cambridge University, UK. He is currently an assistant professor at the Department of Electrical Engineering of Melbourne University, Australia. His research interests include Bayesian statistics, dynamic models and Monte Carlo methods. Nando de Freitas obtained a Ph.D. degree in information engineering from Cambridge University in 1999. He is presently a research associate with the artificial intelligence group of the University of California at Berkeley. His main research interests are in Bayesian statistics and the application of on-line and batch Monte Carlo methods to machine learning. Neil Gordon obtained a Ph.D. in Statistics from Imperial College, University of London in 1993. He is with the Pattern and Information Processing group at the Defence Evaluation and Research Agency in the United Kingdom. His research interests are in time series, statistical data analysis, and pattern recognition with a particular emphasis on target tracking and missile guidance.

[1]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[2]  J. Hammersley,et al.  Poor Man's Monte Carlo , 1954 .

[3]  A. W. Rosenbluth,et al.  MONTE CARLO CALCULATION OF THE AVERAGE EXTENSION OF MOLECULAR CHAINS , 1955 .

[4]  F. T. Wall,et al.  New Method for the Statistical Computation of Polymer Dimensions , 1959 .

[5]  Maurice G. Kendall,et al.  The advanced theory of statistics , 1945 .

[6]  K. Parthasarathy,et al.  Probability measures on metric spaces , 1967 .

[7]  Van Trees,et al.  Detection, Estimation, and Modulation Theory. Part 1 - Detection, Estimation, and Linear Modulation Theory. , 1968 .

[8]  Iosif Ilitch Gikhman,et al.  Introduction to the theory of random processes , 1969 .

[9]  D. Mayne,et al.  Monte Carlo techniques to estimate the conditional expectation in multi-stage non-linear filtering† , 1969 .

[10]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[11]  M. Degroot Optimal Statistical Decisions , 1970 .

[12]  H. Sorenson,et al.  Recursive bayesian estimation using gaussian sums , 1971 .

[13]  H. Sorenson,et al.  Nonlinear Bayesian estimation using Gaussian sum approximations , 1972 .

[14]  D. Titterington A Method of Extremum Adaptation , 1973 .

[15]  Y. Bar-Shalom,et al.  Dual effect, certainty equivalence, and separation in stochastic control , 1974 .

[16]  R. Azzam,et al.  Ellipsometry and polarized light , 1977 .

[17]  M. Netto,et al.  On the optimal and suboptimal nonlinear filtering problem for discrete-time systems , 1977 .

[18]  Y. Bar-Shalom Stochastic dynamic programming: Caution and probing , 1981 .

[19]  A F Smith,et al.  Monitoring renal transplants: an application of the multiprocess Kalman filter. , 1983, Biometrics.

[20]  Yaakov Bar-Shalom,et al.  Dual control guidance for simultaneous identification and interception , 1983, The 22nd IEEE Conference on Decision and Control.

[21]  Graham C. Goodwin,et al.  Adaptive filtering prediction and control , 1984 .

[22]  M. West,et al.  Dynamic Generalized Linear Models and Bayesian Forecasting , 1985 .

[23]  G. Kitagawa,et al.  A smoothness priors time-varying AR coefficient modeling of nonstationary covariance time series , 1985, IEEE Transactions on Automatic Control.

[24]  Peter Andersson,et al.  Adaptive Forgetting in Recursive Identification through Multiple Models , 1985 .

[25]  H. Meirovitch Scanning method with a mean-field parameter: computer simulation study of critical exponents of self-avoiding walks on a square lattice , 1985 .

[26]  Hans P. Moravec,et al.  High resolution maps from wide angle sonar , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[27]  S. Geman,et al.  Diffusions for global optimizations , 1986 .

[28]  M. West Bayesian Model Monitoring , 1986 .

[29]  F. Diebold,et al.  The dynamics of exchange rate volatility: a multivariate latent factor ARCH model , 1986 .

[30]  A. F. Smith,et al.  Statistical analysis of finite mixture distributions , 1986 .

[31]  Michael A. West,et al.  Monitoring and Adaptation in Bayesian Forecasting Models , 1986 .

[32]  L. Rabiner,et al.  An introduction to hidden Markov models , 1986, IEEE ASSP Magazine.

[33]  G. Kitagawa,et al.  Smoothness Priors in Time Series. , 1987 .

[34]  Dimitri P. Bertsekas,et al.  Dynamic Programming: Deterministic and Stochastic Models , 1987 .

[35]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[36]  L. Devroye A Course in Density Estimation , 1987 .

[37]  G. Kitagawa Non-Gaussian State—Space Modeling of Nonstationary Time Series , 1987 .

[38]  James E. Baker,et al.  Reducing Bias and Inefficienry in the Selection Algorithm , 1987, ICGA.

[39]  P. Diaconis,et al.  The Subgroup Algorithm for Generating Uniform Random Variables , 1987, Probability in the Engineering and Informational Sciences.

[40]  Alan G. White,et al.  The Pricing of Options on Assets with Stochastic Volatilities , 1987 .

[41]  Y. Bar-Shalom,et al.  The interacting multiple model algorithm for systems with Markovian switching coefficients , 1988 .

[42]  Mark S. Boddy,et al.  An Analysis of Time-Dependent Planning , 1988, AAAI.

[43]  Kurt Kremer,et al.  Monte Carlo simulation of lattice models for macromolecules , 1988 .

[44]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[45]  Amir Averbuch,et al.  Interacting Multiple Model Methods in Target Tracking: A Survey , 1988 .

[46]  S. Zeger A regression model for time series of counts , 1988 .

[47]  Y. Bar-Shalom Tracking and data association , 1988 .

[48]  Stuart German,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1988 .

[49]  D. Bayard A forward method for optimal stochastic nonlinear and adaptive control , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[50]  W. Cleveland,et al.  Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting , 1988 .

[51]  T. Kerr Status of CR-like lower bounds for nonlinear filtering , 1989 .

[52]  Y. Bar-Shalom,et al.  Tracking a maneuvering target using input estimation versus the interacting multiple model algorithm , 1989 .

[53]  J. Geweke,et al.  BAYESIAN INFERENCE IN ECONOMETRIC MODELS USING , 1989 .

[54]  Keiji Kanazawa,et al.  A model for reasoning about persistence and causation , 1989 .

[55]  R. Hinkel,et al.  ENVIRONMENT PERCEPTION WITH A LASER RADAR IN A FAST MOVING ROBOT , 1989 .

[56]  D. Rubin,et al.  Multiple Imputation for Nonresponse in Surveys , 1989 .

[57]  C. Robert Kenley,et al.  Gaussian influence diagrams , 1989 .

[58]  Heinrich Meyr,et al.  A systematic approach to carrier recovery and detection of digitally phase modulated signals of fading channels , 1989, IEEE Trans. Commun..

[59]  Jeff Harrison,et al.  Subjective intervention in formal models , 1989 .

[60]  F. Girosi,et al.  Networks for approximation and learning , 1990, Proc. IEEE.

[61]  Kumpati S. Narendra,et al.  Identification and control of dynamical systems using neural networks , 1990, IEEE Trans. Neural Networks.

[62]  G. C. Wei,et al.  A Monte Carlo Implementation of the EM Algorithm and the Poor Man's Data Augmentation Algorithms , 1990 .

[63]  Michael A. West,et al.  Efficient bayesian learning in non‐linear dynamic models , 1990 .

[64]  Randall Smith,et al.  Estimating Uncertain Spatial Relationships in Robotics , 1987, Autonomous Robot Vehicles.

[65]  D. Hull,et al.  Linear-quadratic guidance law for dual control of homing missiles , 1990 .

[66]  Stephen M. Omohundro,et al.  Bumptrees for Efficient Function, Constraint and Classification Learning , 1990, NIPS.

[67]  A. L. Sutherland,et al.  Finding spiral structures in images of galaxies , 1990, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[68]  John H. Lodge,et al.  Maximum likelihood sequence estimation of CPM signals transmitted over Rayleigh flat-fading channels , 1990, IEEE Trans. Commun..

[69]  L. Fahrmeir,et al.  On kalman filtering, posterior mode estimation and fisher scoring in dynamic exponential family regression , 1991 .

[70]  David Williams,et al.  Probability with Martingales , 1991, Cambridge mathematical textbooks.

[71]  Ingemar J. Cox,et al.  Blanche-an experiment in guidance and navigation of an autonomous robot vehicle , 1991, IEEE Trans. Robotics Autom..

[72]  J J Koenderink,et al.  Affine structure from motion. , 1991, Journal of the Optical Society of America. A, Optics and image science.

[73]  G. Kitagawa A nonlinear smoothing method for time series analysis , 1991 .

[74]  J. Cavers An analysis of pilot symbol assisted modulation for Rayleigh fading channels (mobile radio) , 1991 .

[75]  Georg Lindgren,et al.  Recursive estimation in mixture models with Markov regime , 1991, IEEE Trans. Inf. Theory.

[76]  Amir Averbuch,et al.  Radar target tracking-Viterbi versus IMM , 1991 .

[77]  Ronen Basri,et al.  Recognition by Linear Combinations of Models , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[78]  L. Fahrmeir Posterior Mode Estimation by Extended Kalman Filtering for Multivariate Dynamic Generalized Linear Models , 1992 .

[79]  A. Harvey,et al.  Unobserved component time series models with Arch disturbances , 1992 .

[80]  N. Kashiwagi,et al.  Smoothing serial count data through a state-space model , 1992 .

[81]  Nicholas G. Polson,et al.  A Monte Carlo Approach to Nonnormal and Nonlinear State-Space Modeling , 1992 .

[82]  Alan E. Gelfand,et al.  Bayesian statistics without tears: A sampling-resampling perspective , 1992 .

[83]  Sylvia Schnatter Integration-based Kalman-filtering for a dynamic generalized linear trend model , 1992 .

[84]  Drew McDermott,et al.  Error correction in mobile robot map learning , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[85]  Pooi Yuen Kam,et al.  Sequence Estimation over the Slow Nonselective Rayleigh Fading Channel with Diversity Reception and Its Application to Viterbi Decoding , 1992, IEEE J. Sel. Areas Commun..

[86]  Ingemar J. Cox,et al.  Dynamic Map Building for an Autonomous Mobile Robot , 1992 .

[87]  Paul Dagum,et al.  Forecasting Sleep Apnea with Dynamic Network Models , 1993, UAI.

[88]  Martin Abba Tanner,et al.  Tools for Statistical Inference: Observed Data and Data Augmentation Methods , 1993 .

[89]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[90]  J. Besag,et al.  Spatial Statistics and Bayesian Computation , 1993 .

[91]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[92]  S. Ito,et al.  Navigation system based on ceiling landmark recognition for autonomous mobile robot , 1993, Proceedings of IECON '93 - 19th Annual Conference of IEEE Industrial Electronics.

[93]  Timothy F. Cootes,et al.  Building and using flexible models incorporating grey-level information , 1993, 1993 (4th) International Conference on Computer Vision.

[94]  Hisashi Tanizaki,et al.  Nonlinear filters , 1993 .

[95]  Neil Gordon,et al.  Bayesian methods for tracking , 1993 .

[96]  S. Sampei,et al.  Rayleigh fading compensation for QAM in land mobile radio communications , 1993 .

[97]  R. White,et al.  Image recovery from data acquired with a charge-coupled-device camera. , 1993, Journal of the Optical Society of America. A, Optics and image science.

[98]  Wolfgang D. Rencken,et al.  Concurrent localisation and map building for mobile robots using ultrasonic sensors , 1993, Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93).

[99]  A. Kong,et al.  Sequential imputation for multilocus linkage analysis. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[100]  Lee A. Feldkamp,et al.  Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks , 1994, IEEE Trans. Neural Networks.

[101]  Jun S. Liu,et al.  Sequential Imputations and Bayesian Missing Data Problems , 1994 .

[102]  S. Frühwirth-Schnatter Applied state space modelling of non-Gaussian time series using integration-based Kalman filtering , 1994 .

[103]  Geir Storvik,et al.  A Bayesian Approach to Dynamic Contours Through Stochastic Sampling and Simulated Annealing , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[104]  John B. Moore,et al.  AN HMM APPROACH TO ADAPTIVE DEMODULATION OF QAM SIGNALS IN FADING CHANNELS , 1994 .

[105]  N. Shephard Partial non-Gaussian state space , 1994 .

[106]  Jun S. Liu,et al.  Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes , 1994 .

[107]  Peter E. Rossi,et al.  Bayesian Analysis of Stochastic Volatility Models , 1994 .

[108]  Ann E. Nicholson,et al.  Dynamic Belief Networks for Discrete Monitoring , 1994, IEEE Trans. Syst. Man Cybern. Syst..

[109]  C. Geyer Estimating Normalizing Constants and Reweighting Mixtures , 1994 .

[110]  Michael Isard,et al.  3D position, attitude and shape input using video tracking of hands and lips , 1994, SIGGRAPH.

[111]  W. Dale Blair,et al.  Interacting multiple model algorithm for solution to benchmark problem for tracking maneuvering targets , 1994, Defense, Security, and Sensing.

[112]  Enrique Sentana,et al.  Volatiltiy and Links between National Stock Markets , 1990 .

[113]  R. Kohn,et al.  On Gibbs sampling for state space models , 1994 .

[114]  Jitendra Malik,et al.  Automatic Symbolic Traffic Scene Analysis Using Belief Networks , 1994, AAAI.

[115]  David C. Hogg,et al.  Learning Flexible Models from Image Sequences , 1994, ECCV.

[116]  Anup Basu,et al.  Motion Tracking with an Active Camera , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[117]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[118]  Ewald von Puttkamer,et al.  Keeping track of position and orientation of moving indoor systems by correlation of range-finder scans , 1994, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94).

[119]  N. Shephard,et al.  Stochastic Volatility: Likelihood Inference And Comparison With Arch Models , 1996 .

[120]  Jitendra Malik,et al.  Robust Multiple Car Tracking with Occlusion Reasoning , 1994, ECCV.

[121]  Robert M. Fung,et al.  Backward Simulation in Bayesian Networks , 1994, UAI.

[122]  John B. Moore,et al.  An adaptive hidden Markov model approach to FM and M-ary DPSK demodulation in noisy fading channels , 1995, Signal Process..

[123]  Stuart J. Russell,et al.  Stochastic simulation algorithms for dynamic probabilistic networks , 1995, UAI.

[124]  D. Avitzour Stochastic simulation Bayesian approach to multitarget tracking , 1995 .

[125]  Aaron F. Bobick,et al.  Recognition of human body motion using phase space constraints , 1995, Proceedings of IEEE International Conference on Computer Vision.

[126]  Neil J. Gordon,et al.  Bayesian State Estimation for Tracking and Guidance Using the Bootstrap Filter , 1993 .

[127]  G. Tanner,et al.  Missile control against multiple targets using non-quadratic cost functions , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[128]  David Beymer,et al.  Face recognition from one example view , 1995, Proceedings of IEEE International Conference on Computer Vision.

[129]  Reid G. Simmons,et al.  Probabilistic Robot Navigation in Partially Observable Environments , 1995, IJCAI.

[130]  Shlomo Zilberstein,et al.  Approximate Reasoning Using Anytime Algorithms , 1995 .

[131]  P. Doerschuk Cramer-Rao bounds for discrete-time nonlinear filtering problems , 1995, IEEE Trans. Autom. Control..

[132]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[133]  T. Hesterberg,et al.  Weighted Average Importance Sampling and Defensive Mixture Distributions , 1995 .

[134]  K. Chan,et al.  Monte Carlo EM Estimation for Time Series Models Involving Counts , 1995 .

[135]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[136]  Chris J. Harris,et al.  Multi-sensor data fusion for helicopter guidance using neuro-fuzzy estimation algorithms , 1995, 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century.

[137]  J. M. Torrance,et al.  Comparative study of pilot symbol assisted modem schemes , 1995 .

[138]  U. Grenander,et al.  nal-Mean Estimation Via Jump-Diffusion ses in Multiple Target Tracking/Recognition , 1995 .

[139]  Timothy F. Cootes,et al.  A unified approach to coding and interpreting face images , 1995, Proceedings of IEEE International Conference on Computer Vision.

[140]  Desmond P. Taylor,et al.  Maximum likelihood decoding of uncoded and coded PSK signal sequences transmitted over Rayleigh flat-fading channels , 1995, IEEE Trans. Commun..

[141]  J. Geweke,et al.  Measuring the pricing error of the arbitrage pricing theory , 1996 .

[142]  Jun S. Liu,et al.  Blind Deconvolution via Sequential Imputations , 1995 .

[143]  Steven D. Blostein,et al.  Identification of frequency non-selective fading channels using decision feedback and adaptive linear prediction , 1995, IEEE Trans. Commun..

[144]  David C. Hogg,et al.  An Adaptive Eigenshape Model , 1995, BMVC.

[145]  Michael Isard,et al.  Learning to Track the Visual Motion of Contours , 1995, Artif. Intell..

[146]  Michael P. Fitz,et al.  Near-optimal symbol-by-symbol detection schemes for flat Rayleigh fading , 1995, IEEE Trans. Commun..

[147]  D. Talay,et al.  The law of the Euler scheme for stochastic differential equations , 1996 .

[148]  N. Stenseth,et al.  Is spacing behaviour coupled with predation causing the micro tine density cycle? A synthesis of current process-oriented and pattern-oriented studies , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[149]  G. Kitagawa Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models , 1996 .

[150]  A. Raftery,et al.  Local Adaptive Importance Sampling for Multivariate Densities with Strong Nonlinear Relationships , 1996 .

[151]  Andrew Blake,et al.  Statistical mosaics for tracking , 1996, Image Vis. Comput..

[152]  Craig Boutilier,et al.  Context-Specific Independence in Bayesian Networks , 1996, UAI.

[153]  Tomaso A. Poggio,et al.  Image Synthesis from a Single Example Image , 1996, ECCV.

[154]  Wolfram Burgard,et al.  Estimating the Absolute Position of a Mobile Robot Using Position Probability Grids , 1996, AAAI/IAAI, Vol. 2.

[155]  David C. Hogg,et al.  Generating Spatiotemporal Models from Examples , 1995, BMVC.

[156]  Norikazu Ikoma Estimation of time varying peak of power spectrum based on non-Gaussian nonlinear state space modeling , 1996, Signal Process..

[157]  Reid G. Simmons,et al.  Passive Distance Learning for Robot Navigation , 1996, ICML.

[158]  C. Russell,et al.  Detection and Behavior of Pan Wakes in Saturn's A Ring , 1996 .

[159]  Liqiang Feng,et al.  Navigating Mobile Robots: Systems and Techniques , 1996 .

[160]  R. Kohn,et al.  Markov chain Monte Carlo in conditionally Gaussian state space models , 1996 .

[161]  Michael Isard,et al.  Contour Tracking by Stochastic Propagation of Conditional Density , 1996, ECCV.

[162]  Gordon L. Stuber,et al.  Principles of Mobile Communication , 1996 .

[163]  Leslie Pack Kaelbling,et al.  Acting under uncertainty: discrete Bayesian models for mobile-robot navigation , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[164]  D. Mumford Pattern theory: a unifying perspective , 1996 .

[165]  Peter J Green,et al.  Markov chain Monte Carlo in image analysis , 1996 .

[166]  N. Stenseth,et al.  A gradient from stable to cyclic populations of Clethrionomys rufocanus in Hokkaido, Japan , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[167]  Andrew Blake,et al.  Learning Dynamics of Complex Motions from Image Sequences , 1996, ECCV.

[168]  Anthony G. Cohn,et al.  Generation of Semantic Regions from Image Sequences , 1996, ECCV.

[169]  Jun S. Liu Nonparametric hierarchical Bayes via sequential imputations , 1996 .

[170]  J. Durbin,et al.  Monte Carlo maximum likelihood estimation for non-Gaussian state space models , 1997 .

[171]  Michael J. Gertsman,et al.  Symbol-by-symbol MAP demodulation of CPM and PSK signals on Rayleigh flat-fading channels , 1997, IEEE Trans. Commun..

[172]  Costas N. Georghiades,et al.  Sequence estimation in the presence of random parameters via the EM algorithm , 1997, IEEE Trans. Commun..

[173]  J. J. Rajan,et al.  Bayesian approach to parameter estimation and interpolation of time-varying autoregressive processes using the Gibbs sampler , 1997 .

[174]  P. Grassberger Pruned-enriched Rosenbluth method: Simulations of θ polymers of chain length up to 1 000 000 , 1997 .

[175]  Simon J. Godsill,et al.  Bayesian Enhancement of Speech and Audio Signals which can be Modelled as ARMA Processes , 1997 .

[176]  Michael I. Miller,et al.  Accommodating geometric and thermodynamic variability for forward-looking infrared sensors , 1997, Defense, Security, and Sensing.

[177]  T. Higuchi Monte carlo filter using the genetic algorithm operators , 1997 .

[178]  T. Rydén On recursive estimation for hidden Markov models , 1997 .

[179]  R. Tweedie,et al.  Exponential Convergence of Langevin Diiusions and Their Discrete Approximations , 1997 .

[180]  Jun S. Liu,et al.  Sequential Monte Carlo methods for dynamic systems , 1997 .

[181]  N. Stenseth,et al.  Population regulation in snowshoe hare and Canadian lynx: asymmetric food web configurations between hare and lynx. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[182]  M. Pitt,et al.  Likelihood analysis of non-Gaussian measurement time series , 1997 .

[183]  Michael I. Miller,et al.  General Metropolis-Hastings jump diffusions for automatic target recognition in infrared scenes , 1997 .

[184]  N. Gordon A hybrid bootstrap filter for target tracking in clutter , 1995, IEEE Transactions on Aerospace and Electronic Systems.

[185]  Aaron F. Bobick,et al.  State-Based Recognition of Gesture , 1997 .

[186]  N. G. Best,et al.  Dynamic conditional independence models and Markov chain Monte Carlo methods , 1997 .

[187]  Michael I. Jordan,et al.  Probabilistic Independence Networks for Hidden Markov Probability Models , 1997, Neural Computation.

[188]  Karen Zita Haigh,et al.  A layered architecture for office delivery robots , 1997, AGENTS '97.

[189]  J. Monahan,et al.  Spherical-Radial Integration Rules for Bayesian Computation , 1997 .

[190]  D. Crisan,et al.  Nonlinear filtering and measure-valued processes , 1997 .

[191]  Andrew W. Moore,et al.  Efficient Locally Weighted Polynomial Regression Predictions , 1997, ICML.

[192]  Carlos H. Muravchik,et al.  Posterior Cramer-Rao bounds for discrete-time nonlinear filtering , 1998, IEEE Trans. Signal Process..

[193]  Simon J. Godsill,et al.  On sequential simulation-based methods for Bayesian filtering , 1998 .

[194]  Wolfram Burgard,et al.  A Probabilistic Approach to Concurrent Mapping and Localization for Mobile Robots , 1998, Auton. Robots.

[195]  M. Pitt,et al.  Time Varying Covariances: A Factor Stochastic Volatility Approach (with discussion , 1998 .

[196]  Pierre Del Moral,et al.  Discrete Filtering Using Branching and Interacting Particle Systems , 1998 .

[197]  Geoffrey Zweig,et al.  Speech Recognition with Dynamic Bayesian Networks , 1998, AAAI/IAAI.

[198]  Andrew Blake,et al.  Separability of pose and expression in facial tracking and animation , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[199]  Duncan Fyfe Gillies,et al.  Deformable models for object recognition in aerial images , 1998, Defense, Security, and Sensing.

[200]  Michael Isard,et al.  A mixed-state condensation tracker with automatic model-switching , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[201]  M. Isard,et al.  Statistical models of visual shape and motion , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[202]  Simon J. Godsill,et al.  Statistical reconstruction and analysis of autoregressive signals in impulsive noise using the Gibbs sampler , 1998, IEEE Trans. Speech Audio Process..

[203]  C. C. Homes,et al.  Bayesian Radial Basis Functions of Variable Dimension , 1998, Neural Computation.

[204]  Wolfram Burgard,et al.  Active Markov localization for mobile robots , 1998, Robotics Auton. Syst..

[205]  Andrew Blake,et al.  A probabilistic contour discriminant for object localisation , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[206]  Alain Monfort,et al.  The Simulated Likelihood Ratio (SLR) Method , 1998 .

[207]  Robin R. Murphy,et al.  Artificial intelligence and mobile robots: case studies of successful robot systems , 1998 .

[208]  C. Pickering Complementary in-situ and post-deposition diagnostics of thin film semiconductor structures , 1998 .

[209]  Xavier Boyen,et al.  Tractable Inference for Complex Stochastic Processes , 1998, UAI.

[210]  G. Peters,et al.  Monte Carlo Approximations for General State-Space Models , 1998 .

[211]  Donka Angelova,et al.  Target tracking using Monte Carlo simulation , 1998 .

[212]  G. Oehlert Faster Adaptive Importance Sampling in Low Dimensions , 1998 .

[213]  P. Bickel,et al.  Asymptotic normality of the maximum-likelihood estimator for general hidden Markov models , 1998 .

[214]  Jun S. Liu,et al.  Rejection Control and Sequential Importance Sampling , 1998 .

[215]  Richard V. Lawrence Interceptor Line-of-Sight Rate Steering: Necessary Conditions for a Direct Hit , 1998 .

[216]  Daphne Koller,et al.  Using Learning for Approximation in Stochastic Processes , 1998, ICML.

[217]  Markus Hürzeler Statistical methods for general state-space models , 1998 .

[218]  Peter J. W. Rayner,et al.  Digital Audio Restoration: A Statistical Model Based Approach , 1998 .

[219]  Michael I. Miller,et al.  Hilbert-Schmidt Lower Bounds for Estimators on Matrix Lie Groups for ATR , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[220]  Neil J. Gordon,et al.  Tracking in the presence of intermittent spurious objects and clutter , 1998, Defense, Security, and Sensing.

[221]  Fredrik Gustafsson,et al.  Terrain navigation using Bayesian statistics , 1999 .

[222]  Michael I. Miller,et al.  Estimation of pose and location of ground targets for ATR , 1999, Defense, Security, and Sensing.

[223]  Kevin P. Murphy,et al.  Bayesian Map Learning in Dynamic Environments , 1999, NIPS.

[224]  Wolfram Burgard,et al.  Using the CONDENSATION algorithm for robust, vision-based mobile robot localization , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[225]  P. Fearnhead,et al.  Improved particle filter for nonlinear problems , 1999 .

[226]  Wolfram Burgard,et al.  Monte Carlo Localization: Efficient Position Estimation for Mobile Robots , 1999, AAAI/IAAI.

[227]  Andrew Blake,et al.  Using expectation-maximisation to learn dynamical models from visual data , 1999, Image Vis. Comput..

[228]  Jun S. Liu,et al.  Sequential importance sampling for nonparametric Bayes models: The next generation , 1999 .

[229]  M. Pitt,et al.  Filtering via Simulation: Auxiliary Particle Filters , 1999 .

[230]  W. Burgard,et al.  Markov Localization for Mobile Robots in Dynamic Environments , 1999, J. Artif. Intell. Res..

[231]  S. Thrun,et al.  Mosaicing a Large Number of Widely Dispersed, Noisy, and Distorted Images: A Bayesian Approach , 1999 .

[232]  Dragomir Anguelov,et al.  A General Algorithm for Approximate Inference and Its Application to Hybrid Bayes Nets , 1999, UAI.

[233]  Simon J. Godsill,et al.  Fixed-lag smoothing using sequential importance sampling , 1999 .

[234]  P. Moral,et al.  Central limit theorem for nonlinear filtering and interacting particle systems , 1999 .

[235]  Michael A. West,et al.  Evaluation and Comparison of EEG Traces: Latent Structure in Nonstationary Time Series , 1999 .

[236]  Christophe Andrieu,et al.  Sequential Bayesian Estimation And Model Selection Applied To Neural Networks , 1999 .

[237]  P.M. Djuric,et al.  Monitoring and selection of dynamic models by Monte Carlo sampling , 1999, Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics. SPW-HOS '99.

[238]  P. Vidoni Exponential family state space models based on a conjugate latent process , 1999 .

[239]  R. Kohn,et al.  Diagnostics for Time Series Analysis , 1999 .

[240]  Wolfram Burgard,et al.  Monte Carlo localization for mobile robots , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[241]  Xavier Boyen,et al.  Exploiting the Architecture of Dynamic Systems , 1999, AAAI/IAAI.

[242]  Wolfram Burgard,et al.  MINERVA: a second-generation museum tour-guide robot , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[243]  N. Oudjane,et al.  Multiple model particle filter , 1999 .

[244]  T. Higuchi Applications of quasi-periodic oscillation models to seasonal small count time series , 1999 .

[245]  Kevin P. Murphy,et al.  A Variational Approximation for Bayesian Networks with Discrete and Continuous Latent Variables , 1999, UAI.

[246]  Pieter J. Mosterman,et al.  Diagnosis of continuous valued systems in transient operating regions , 1999, IEEE Trans. Syst. Man Cybern. Part A.

[247]  Wolfram Burgard,et al.  Monte Carlo Localization with Mixture Proposal Distribution , 2000, AAAI/IAAI.

[248]  Simon J. Godsill,et al.  On-line Bayesian modelling and enhancement of speech signals , 2000 .

[249]  G. Kitagawa,et al.  NONLINEAR STATE SPACE MODEL APPROACH TO FINANCIAL TIME SERIES WITH TIME-VARYING VARIANCE , 2000 .

[250]  Gomes de Freitas,et al.  Bayesian methods for neural networks , 2000 .

[251]  Simon J. Godsill,et al.  Methodology for Monte Carlo smoothing with application to time-varying autoregressions , 2000 .

[252]  Petar M. Djuric,et al.  Sequential Monte Carlo sampling detector for Rayleigh fast-fading channels , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[253]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[254]  Nando de Freitas,et al.  The Unscented Particle Filter , 2000, NIPS.

[255]  Manuela M. Veloso,et al.  Sensor resetting localization for poorly modelled mobile robots , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[256]  Anuj Srivastava,et al.  Bayesian filtering for tracking pose and location of rigid targets , 2000, SPIE Defense + Commercial Sensing.

[257]  Hans Kiinsch,et al.  State Space and Hidden Markov Models , 2000 .

[258]  M. West,et al.  Bayesian Dynamic Factor Models and Portfolio Allocation , 2000 .

[259]  Nando de Freitas,et al.  Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks , 2000, UAI.

[260]  M. Ledoux,et al.  Convergence of Empirical Processes for Interacting Particle Systems with Applications to Nonlinear Filtering , 2000 .

[261]  Arnaud Doucet,et al.  Sequential Monte Carlo Methods to Train Neural Network Models , 2000, Neural Computation.

[262]  P. Moral,et al.  Branching and interacting particle systems. Approximations of Feynman-Kac formulae with applications to non-linear filtering , 2000 .

[263]  Wolfram Burgard,et al.  A Probabilistic Approach to Collaborative Multi-Robot Localization , 2000, Auton. Robots.

[264]  Anuj Srivastava,et al.  Probability Models for Clutter in Natural Images , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[265]  W. Gilks,et al.  Following a moving target—Monte Carlo inference for dynamic Bayesian models , 2001 .

[266]  Arnaud Doucet,et al.  Particle filters for state estimation of jump Markov linear systems , 2001, IEEE Trans. Signal Process..

[267]  P. Protter,et al.  The Monte-Carlo method for filtering with discrete-time observations , 2001 .

[268]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[269]  Dan Crisan,et al.  Minimal Entropy Approximations and Optimal Algorithms , 2002, Monte Carlo Methods Appl..

[270]  G. Lewicki,et al.  Approximation by Superpositions of a Sigmoidal Function , 2003 .

[271]  S. Zacks,et al.  Journal of Statistical Planning and Inference , 2016 .