Approximating and Intersecting Surfaces from Points

Point sets become an increasingly popular shape representation. Most shape processing and rendering tasks require the approximation of a continuous surface from the point data. We present a surface approximation that is motivated by an efficient iterative ray intersection computation. On each point on a ray, a local normal direction is estimated as the direction of smallest weighted co-variances of the points. The normal direction is used to build a local polynomial approximation to the surface, which is then intersected with the ray. The distance to the polynomials essentially defines a distance field, whose zero-set is computed by repeated ray intersection. Requiring the distance field to be smooth leads to an intuitive and natural sampling criterion, namely, that normals derived from the weighted co-variances are well defined in a tubular neighborhood of the surface. For certain, well-chosen weight functions we can show that well-sampled surfaces lead to smooth distance fields with non-zero gradients and, thus, the surface is a continuously differentiable manifold. We detail spatial data structures and efficient algorithms to compute ray-surface intersections for fast ray casting and ray tracing of the surface.

[1]  Vaughan R. Pratt,et al.  Direct least-squares fitting of algebraic surfaces , 1987, SIGGRAPH.

[2]  Gabriel Taubin,et al.  The ball-pivoting algorithm for surface reconstruction , 1999, IEEE Transactions on Visualization and Computer Graphics.

[3]  David B. Cooper,et al.  3L fitting of higher degree implicit polynomials , 1996, Proceedings Third IEEE Workshop on Applications of Computer Vision. WACV'96.

[4]  Marc Alexa,et al.  Point set surfaces , 2001, Proceedings Visualization, 2001. VIS '01..

[5]  Hans-Peter Seidel,et al.  Multi-level partition of unity implicits , 2003, ACM Trans. Graph..

[6]  Tosiyasu L. Kunii,et al.  Function Representation of Solids Reconstructed from Scattered Surface Points and Contours , 1995, Comput. Graph. Forum.

[7]  Amitabh Varshney,et al.  Differential Point Rendering , 2001, Rendering Techniques.

[8]  N. Dyn,et al.  Adaptive thinning for bivariate scattered data , 2002 .

[9]  Sunghee Choi,et al.  A simple algorithm for homeomorphic surface reconstruction , 2000, SCG '00.

[10]  Sunghee Choi,et al.  The power crust, unions of balls, and the medial axis transform , 2001, Comput. Geom..

[11]  James F. O'Brien,et al.  Modelling with implicit surfaces that interpolate , 2002, TOGS.

[12]  Marc Alexa,et al.  Computing and Rendering Point Set Surfaces , 2003, IEEE Trans. Vis. Comput. Graph..

[13]  Tony DeRose,et al.  Surface reconstruction from unorganized points , 1992, SIGGRAPH.

[14]  D. P. Mitchell Robust ray intersection with interval arithmetic , 1990 .

[15]  Hans-Peter Seidel,et al.  A multi-scale approach to 3D scattered data interpolation with compactly supported basis functions , 2003, 2003 Shape Modeling International..

[16]  Marshall W. Bern,et al.  A new Voronoi-based surface reconstruction algorithm , 1998, SIGGRAPH.

[17]  Matthias Zwicker,et al.  Pointshop 3D: an interactive system for point-based surface editing , 2002, SIGGRAPH.

[18]  A. Ardeshir Goshtasby,et al.  Surface fitting to scattered data by a sum of Gaussians , 1993, Comput. Aided Geom. Des..

[19]  Tamal K. Dey,et al.  Tight cocone: a water-tight surface reconstructor , 2003, SM '03.

[20]  R. Beatson,et al.  Fast evaluation of radial basis functions : methods for two-dimensional polyharmonic splines , 1997 .

[21]  David Eppstein,et al.  The Crust and the beta-Skeleton: Combinatorial Curve Reconstruction , 1998, Graph. Model. Image Process..

[22]  Carlos Ureña,et al.  An Efficient Parametric Algorithm for Octree Traversal , 2000, WSCG.

[23]  Marc Levoy,et al.  Real-time 3D model acquisition , 2002, ACM Trans. Graph..

[24]  Matthias Zwicker,et al.  Surfels: surface elements as rendering primitives , 2000, SIGGRAPH.

[25]  Hyeong In Choi,et al.  The Medial Axis Transform , 2002, Handbook of Computer Aided Geometric Design.

[26]  Tamal K. Dey,et al.  Delaunay based shape reconstruction from large data , 2001, Proceedings IEEE 2001 Symposium on Parallel and Large-Data Visualization and Graphics (Cat. No.01EX520).

[27]  Henrik Wann Jensen,et al.  Ray Tracing Point Sampled Geometry , 2000, Rendering Techniques.

[28]  B. Dundas,et al.  DIFFERENTIAL TOPOLOGY , 2002 .

[29]  David Levin,et al.  The approximation power of moving least-squares , 1998, Math. Comput..

[30]  Tony DeRose,et al.  Piecewise smooth surface reconstruction , 1994, SIGGRAPH.

[31]  Meenakshisundaram Gopi,et al.  Surface Reconstruction based on Lower Dimensional Localized Delaunay Triangulation , 2000, Comput. Graph. Forum.

[32]  Armin Iske,et al.  Hierarchical scattered data filtering for multilevel interpolation schemes , 2001 .

[33]  Armin Iske,et al.  Multilevel scattered data approximation by adaptive domain decomposition , 2005, Numerical Algorithms.

[34]  P. Giblin,et al.  Curves and Singularities , 1986, The Mathematical Gazette.

[35]  A. Adamson,et al.  Ray tracing point set surfaces , 2003, 2003 Shape Modeling International..

[36]  Holger Wendland,et al.  Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree , 1995, Adv. Comput. Math..

[37]  Herbert Edelsbrunner,et al.  Three-dimensional alpha shapes , 1992, VVS.

[38]  Markus H. Gross,et al.  Efficient simplification of point-sampled surfaces , 2002, IEEE Visualization, 2002. VIS 2002..

[39]  Markus Gross Are Points the Better Graphics Primitives? , 2001, Comput. Graph. Forum.

[40]  Richard K. Beatson,et al.  Fast Evaluation of Radial Basis Functions: Moment-Based Methods , 1998, SIAM J. Sci. Comput..

[41]  Richard K. Beatson,et al.  Fast Solution of the Radial Basis Function Interpolation Equations: Domain Decomposition Methods , 2000, SIAM J. Sci. Comput..

[42]  Marc Levoy,et al.  QSplat: a multiresolution point rendering system for large meshes , 2000, SIGGRAPH.

[43]  Markus H. Gross,et al.  Shape modeling with point-sampled geometry , 2003, ACM Trans. Graph..

[44]  John C. Hart,et al.  Sphere tracing: a geometric method for the antialiased ray tracing of implicit surfaces , 1996, The Visual Computer.

[45]  Devendra Kalra,et al.  Guaranteed ray intersections with implicit surfaces , 1989, SIGGRAPH.

[46]  Marc Levoy,et al.  A volumetric method for building complex models from range images , 1996, SIGGRAPH.

[47]  Matthias Zwicker,et al.  3 Ideal Resampling 3 . 1 Sampling and Aliasing , 2022 .

[48]  Katsushi Ikeuchi,et al.  Consensus surfaces for modeling 3D objects from multiple range images , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[49]  Jean-Daniel Boissonnat,et al.  Geometric structures for three-dimensional shape representation , 1984, TOGS.

[50]  Marc Levoy,et al.  The digital Michelangelo project: 3D scanning of large statues , 2000, SIGGRAPH.

[51]  M. Floater,et al.  Multistep scattered data interpolation using compactly supported radial basis functions , 1996 .

[52]  Jean-Daniel Boissonnat,et al.  Smooth surface reconstruction via natural neighbour interpolation of distance functions , 2000, SCG '00.

[53]  D. Levin,et al.  Mesh-Independent Surface Interpolation , 2004 .

[54]  K. Sheinkopf Mandell, Maurice I. Advertising. 2nd ed. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1974 , 1974 .

[55]  M. Floater,et al.  Thinning algorithms for scattered data interpolation , 1998 .