Paths and Cycles in Breakpoint Graphs of Random Multichromosomal Genomes

We study the probability distribution of genomic distance d under the hypothesis of random gene order. We interpret the random order assumption in terms of a stochastic method for constructing the alternating colour cycles in the decomposition of the bicoloured breakpoint graph. For two random genomes of length n and χ chromosomes, we show that the expectation of n + χ– d is $O(\frac{1}{2}\log\frac{n+\chi}{2\chi}+\frac{3}{2}\chi)$. We then discuss how to extend these analyses to the case where intra- and interchromosomal operations have different probabilities.

[1]  W. Ewens,et al.  The chromosome inversion problem , 1982 .

[2]  David Sankoff,et al.  Stability of Rearrangement Measures in the Comparison of Genome Sequences , 2006, J. Comput. Biol..

[3]  Wei Xu,et al.  The Distance Between Randomly Constructed Genomes , 2007, APBC.

[4]  Pavel A. Pevzner,et al.  Transforming men into mice (polynomial algorithm for genomic distance problem) , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[5]  Pavel A. Pevzner,et al.  Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals , 1995, JACM.

[6]  Glenn Tesler,et al.  Efficient algorithms for multichromosomal genome rearrangements , 2002, J. Comput. Syst. Sci..

[7]  Nicholas C. Wormald,et al.  Random Matchings Which Induce Hamilton Cycles and Hamiltonian Decompositions of Random Regular Graphs , 2001, J. Comb. Theory, Ser. B.

[8]  David Sankoff,et al.  The Signal in the Genomes , 2006, PLoS Comput. Biol..

[9]  Axel Hultman,et al.  Estimating the expected reversal distance after a fixed number of reversals , 2004, Adv. Appl. Math..

[10]  Richard Friedberg,et al.  Efficient sorting of genomic permutations by translocation, inversion and block interchange , 2005, Bioinform..

[11]  David Sankoff,et al.  Edit Distances for Genome Comparisons Based on Non-Local Operations , 1992, CPM.

[12]  David Sankoff,et al.  The Distribution of Genomic Distance between Random Genomes , 2006, J. Comput. Biol..

[13]  David Sankoff,et al.  Efficient Bounds for Oriented Chromosome Inversion Distance , 1994, CPM.

[14]  Junesang Choi,et al.  ON THE EULER'S CONSTANT , 1997 .