Model calibration and uncertainty analysis in signaling networks.

For a long time the biggest challenges in modeling cellular signal transduction networks has been the inference of crucial pathway components and the qualitative description of their interactions. As a result of the emergence of powerful high-throughput experiments, it is now possible to measure data of high temporal and spatial resolution and to analyze signaling dynamics quantitatively. In addition, this increase of high-quality data is the basis for a better understanding of model limitations and their influence on the predictive power of models. We review established approaches in signal transduction network modeling with a focus on ordinary differential equation models as well as related developments in model calibration. As central aspects of the calibration process we discuss possibilities of model adaptation based on data-driven parameter optimization and the concomitant objective of reducing model uncertainties.

[1]  J. Timmer,et al.  Experimental Design for Parameter Estimation of Gene Regulatory Networks , 2012, PloS one.

[2]  Johan Karlsson,et al.  Comparison of approaches for parameter identifiability analysis of biological systems , 2014, Bioinform..

[3]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[4]  Roland Eils,et al.  Optimal Experimental Design for Parameter Estimation of a Cell Signaling Model , 2009, PLoS Comput. Biol..

[5]  V. Roche,et al.  A service-learning elective in Native American culture, health and professional practice. , 2007, American journal of pharmaceutical education.

[6]  P. Mendes,et al.  Multi-scale modelling and simulation in systems biology. , 2011, Integrative biology : quantitative biosciences from nano to macro.

[7]  Peter A. J. Hilbers,et al.  An integrated strategy for prediction uncertainty analysis , 2012, Bioinform..

[8]  Mats Jirstrand,et al.  Systems biology Systems Biology Toolbox for MATLAB : a computational platform for research in systems biology , 2006 .

[9]  John Lygeros,et al.  Identifying stochastic biochemical networks from single-cell population experiments: A comparison of approaches based on the Fisher information , 2013, 52nd IEEE Conference on Decision and Control.

[10]  C. R. Rao,et al.  Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .

[11]  R. Baayen,et al.  Mixed-effects modeling with crossed random effects for subjects and items , 2008 .

[12]  Jeremy L. Muhlich,et al.  Properties of cell death models calibrated and compared using Bayesian approaches , 2013, Molecular systems biology.

[13]  J. Meza Newton's method , 2011 .

[14]  Mustafa Khammash,et al.  A distribution‐matching method for parameter estimation and model selection in computational biology , 2012 .

[15]  Jens Timmer,et al.  Summary of the DREAM8 Parameter Estimation Challenge: Toward Parameter Identification for Whole-Cell Models , 2015, PLoS Comput. Biol..

[16]  D. Lauffenburger,et al.  Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction , 2009, Molecular systems biology.

[17]  S. Emery,et al.  Changes in Bone Turnover and Bone Loss in HIV-Infected Patients Changing Treatment to Tenofovir-Emtricitabine or Abacavir-Lamivudine , 2012, PloS one.

[18]  Xh Huang,et al.  Pharmacokinetic-Pharmacodynamic Modeling and Simulation. , 2007 .

[19]  Gabriele Lillacci,et al.  The signal within the noise: efficient inference of stochastic gene regulation models using fluorescence histograms and stochastic simulations , 2013, Bioinform..

[20]  Ursula Klingmüller,et al.  Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood , 2009, Bioinform..

[21]  Dagmar Iber,et al.  Predictive models for cellular signaling networks. , 2012, Methods in molecular biology.

[22]  Julio R. Banga,et al.  Optimization in computational systems biology , 2008, BMC Systems Biology.

[23]  Jens Timmer,et al.  Likelihood based observability analysis and confidence intervals for predictions of dynamic models , 2011, BMC Systems Biology.

[24]  R. Albert,et al.  Discrete dynamic modeling of cellular signaling networks. , 2009, Methods in enzymology.

[25]  J. Lygeros,et al.  Moment-based inference predicts bimodality in transient gene expression , 2012, Proceedings of the National Academy of Sciences.

[26]  O Wolkenhauer,et al.  Analysis and modelling of signal transduction pathways in systems biology. , 2003, Biochemical Society transactions.

[27]  Shayn M Peirce,et al.  Multiscale computational models of complex biological systems. , 2013, Annual review of biomedical engineering.

[28]  Sarah Filippi,et al.  A framework for parameter estimation and model selection from experimental data in systems biology using approximate Bayesian computation , 2014, Nature Protocols.

[29]  Stefan Hoehme,et al.  A cell-based simulation software for multi-cellular systems , 2010, Bioinform..

[30]  Jens Timmer,et al.  An error model for protein quantification , 2007, Bioinform..

[31]  S. Klamt,et al.  Modeling approaches for qualitative and semi-quantitative analysis of cellular signaling networks , 2013, Cell Communication and Signaling.

[32]  Fabian J. Theis,et al.  Data2Dynamics: a modeling environment tailored to parameter estimation in dynamical systems , 2015, Bioinform..

[33]  Fabian J Theis,et al.  Lessons Learned from Quantitative Dynamical Modeling in Systems Biology , 2013, PloS one.

[34]  Jonathan R. Karr,et al.  A Whole-Cell Computational Model Predicts Phenotype from Genotype , 2012, Cell.

[35]  M. Peter,et al.  Scalable inference of heterogeneous reaction kinetics from pooled single-cell recordings , 2013, Nature Methods.

[36]  Thomas Thorne,et al.  Calibrating spatio-temporal models of leukocyte dynamics against in vivo live-imaging data using approximate Bayesian computation. , 2012, Integrative biology : quantitative biosciences from nano to macro.

[37]  Julio R. Banga,et al.  Reverse engineering and identification in systems biology: strategies, perspectives and challenges , 2014, Journal of The Royal Society Interface.

[38]  Fabian J. Theis,et al.  Data-driven modelling of biological multi-scale processes , 2015, 1506.06392.

[39]  D. Wilkinson Stochastic modelling for quantitative description of heterogeneous biological systems , 2009, Nature Reviews Genetics.

[40]  Fabian J. Theis,et al.  Uncertainty Analysis for Non-identifiable Dynamical Systems: Profile Likelihoods, Bootstrapping and More , 2014, CMSB.

[41]  N A W van Riel,et al.  Parameter uncertainty in biochemical models described by ordinary differential equations. , 2013, Mathematical biosciences.

[42]  Xin Liu,et al.  Dynamical and Structural Analysis of a T Cell Survival Network Identifies Novel Candidate Therapeutic Targets for Large Granular Lymphocyte Leukemia , 2011, PLoS Comput. Biol..

[43]  M. L. Martins,et al.  Multiscale models for biological systems , 2010 .

[44]  Jens Timmer,et al.  Dynamical modeling and multi-experiment fitting with PottersWheel , 2008, Bioinform..

[45]  Anima Anandkumar,et al.  A Method of Moments for Mixture Models and Hidden Markov Models , 2012, COLT.

[46]  Tina Toni,et al.  Elucidating the in vivo phosphorylation dynamics of the ERK MAP kinase using quantitative proteomics data and Bayesian model selection. , 2012, Molecular bioSystems.

[47]  Mingsheng Zhang,et al.  Comparing signaling networks between normal and transformed hepatocytes using discrete logical models. , 2011, Cancer research.

[48]  J. Timmer,et al.  Systems biology: experimental design , 2009, The FEBS journal.

[49]  Julio R. Banga,et al.  Scatter search for chemical and bio-process optimization , 2007, J. Glob. Optim..

[50]  R. Fisher,et al.  On the Mathematical Foundations of Theoretical Statistics , 1922 .

[51]  D. Lauffenburger,et al.  Physicochemical modelling of cell signalling pathways , 2006, Nature Cell Biology.

[52]  B. Kholodenko Cell-signalling dynamics in time and space , 2006, Nature Reviews Molecular Cell Biology.

[53]  Fabian J Theis,et al.  High-dimensional Bayesian parameter estimation: case study for a model of JAK2/STAT5 signaling. , 2013, Mathematical biosciences.

[54]  Jacob K. White,et al.  Convergence in parameters and predictions using computational experimental design , 2013, Interface Focus.

[55]  Lothar Thiele,et al.  On Set-Based Multiobjective Optimization , 2010, IEEE Transactions on Evolutionary Computation.

[56]  Jeremy Gunawardena,et al.  Signals and Systems: Towards a Systems Biology of Signal Transduction , 2008, Proceedings of the IEEE.

[57]  Joaquim R. R. A. Martins,et al.  The complex-step derivative approximation , 2003, TOMS.

[58]  Christopher R. Myers,et al.  Universally Sloppy Parameter Sensitivities in Systems Biology Models , 2007, PLoS Comput. Biol..

[59]  Jürgen Pahle,et al.  Biochemical simulations: stochastic, approximate stochastic and hybrid approaches , 2008, Briefings Bioinform..

[60]  A Raue,et al.  Identifiability and observability analysis for experimental design in nonlinear dynamical models. , 2010, Chaos.

[61]  David Henriques,et al.  MEIGO: an open-source software suite based on metaheuristics for global optimization in systems biology and bioinformatics , 2013, BMC Bioinformatics.

[62]  Darren J Wilkinson,et al.  Bayesian parameter inference for stochastic biochemical network models using particle Markov chain Monte Carlo , 2011, Interface Focus.