Therapeutic peptides: Targeting the mitochondrion to modulate apoptosis.

For many years, medical drug discovery has extensively exploited peptides as lead compounds. Currently, novel structures of therapeutic peptides are derived from active pre-existing peptides or from high-throughput screening, and optimized following a rational drug design approach. Molecules of interest may prove their ability to influence the disease outcome in animal models and must respond to a set of criteria based on toxicity studies, ease of administration, the cost of their synthesis, and logistic for clinical use to validate it as a good candidate in a therapeutic perspective. This applies to the potential use of peptides to target one central intracellular organelle, the mitochondrion, to modulate (i.e. activate or prevent) apoptosis. Putative mitochondrial protein targets and the strategies already elaborated to correct the defects linked to these proteins (overexpression, inactivation, mutation..., etc.) are described, and recent advances that led or may lead to the conception of therapeutic peptides via a specific action on these mitochondrial targets in the future are discussed.

[1]  John Calvin Reed,et al.  Bcl-2 family proteins and mitochondria. , 1998, Biochimica et biophysica acta.

[2]  S. Willis,et al.  Life in the balance: how BH3-only proteins induce apoptosis. , 2005, Current opinion in cell biology.

[3]  A. Halestrap,et al.  Direct demonstration of a specific interaction between cyclophilin-D and the adenine nucleotide translocase confirms their role in the mitochondrial permeability transition. , 1998, The Biochemical journal.

[4]  A. Halestrap Mitochondrial permeability: Dual role for the ADP/ATP translocator? , 2004, Nature.

[5]  G. Kroemer,et al.  Mitochondria--the Death Signal Integrators , 2000, Science.

[6]  G. Kroemer [Mitochondrial control of apoptosis]. , 2001, Bulletin de l'Academie nationale de medecine.

[7]  S. Korsmeyer,et al.  Cell Death Critical Control Points , 2004, Cell.

[8]  P. Nicotera,et al.  Execution of Apoptosis: Converging or Diverging Pathways? , 1999, Biological chemistry.

[9]  Eva Pebay-Peyroula,et al.  Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside , 2003, Nature.

[10]  P. Nicotera,et al.  Intracellular Adenosine Triphosphate (ATP) Concentration: A Switch in the Decision Between Apoptosis and Necrosis , 1997, The Journal of experimental medicine.

[11]  G. Kroemer,et al.  Purification and liposomal reconstitution of permeability transition pore complex. , 2000, Methods in enzymology.

[12]  Kam Y. J. Zhang,et al.  Antimycin A mimics a cell-death-inducing Bcl-2 homology domain 3 , 2001, Nature Cell Biology.

[13]  John Calvin Reed,et al.  Apoptosis-based therapies , 2002, Nature Reviews Drug Discovery.

[14]  R. Gottlieb,et al.  Loss of Function of Cytochrome c in Jurkat Cells Undergoing Fas-mediated Apoptosis* , 1996, The Journal of Biological Chemistry.

[15]  H. Merker,et al.  The morphology of various types of cell death in prenatal tissues. , 1973, Teratology.

[16]  S. Korsmeyer,et al.  VDAC2 Inhibits BAK Activation and Mitochondrial Apoptosis , 2003, Science.

[17]  S. Grimm,et al.  The permeability transition pore signals apoptosis by directing Bax translocation and multimerization , 2002, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[18]  Z. Oltvai,et al.  Bcl-2 functions in an antioxidant pathway to prevent apoptosis , 1993, Cell.

[19]  G. Kroemer,et al.  The HIV-1 Viral Protein R Induces Apoptosis via a Direct Effect on the Mitochondrial Permeability Transition Pore , 2000, The Journal of experimental medicine.

[20]  Y. Tsujimoto,et al.  BH4 domain of antiapoptotic Bcl-2 family members closes voltage-dependent anion channel and inhibits apoptotic mitochondrial changes and cell death. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[21]  C. Ricordi,et al.  Delivery of Bcl-XL or its BH4 domain by protein transduction inhibits apoptosis in human islets. , 2004, Biochemical and biophysical research communications.

[22]  G. Kroemer,et al.  Chemotherapy: targeting the mitochondrial cell death pathway , 2002, Oncogene.

[23]  G. Kroemer,et al.  Oxidation of a critical thiol residue of the adenine nucleotide translocator enforces Bcl-2-independent permeability transition pore opening and apoptosis , 2000, Oncogene.

[24]  D. Newmeyer,et al.  Mitochondria: pharmacological manipulation of cell death. , 2005, The Journal of clinical investigation.

[25]  J. Martinou,et al.  Role of mitochondrial membrane permeabilization in apoptosis and cancer , 2004, Oncogene.

[26]  O. Warburg [Origin of cancer cells]. , 1956, Oncologia.

[27]  G. Kroemer,et al.  The Permeability Transition Pore Complex: A Target for Apoptosis Regulation by Caspases and Bcl-2–related Proteins , 1998, The Journal of experimental medicine.

[28]  G. Kroemer,et al.  Apoptosis induction by the photosensitizer verteporfin: identification of mitochondrial adenine nucleotide translocator as a critical target. , 2001, Cancer research.

[29]  T. Yanagida,et al.  Electrophysiological Study of a Novel Large Pore Formed by Bax and the Voltage-dependent Anion Channel That Is Permeable to Cytochrome c * , 2000, The Journal of Biological Chemistry.

[30]  G. Kroemer,et al.  The adenine nucleotide translocator: a target of nitric oxide, peroxynitrite, and 4-hydroxynonenal , 2001, Oncogene.

[31]  M. Zoratti,et al.  Ca2+‐reversible inhibition of the mitochondrial megachannel by ubiquinone analogues , 2000, FEBS letters.

[32]  S. Donnini,et al.  Exogenous BH4/Bcl-2 Peptide Reverts Coronary Endothelial Cell Apoptosis Induced by Oxidative Stress , 2004, Journal of Vascular Research.

[33]  J. Martinou,et al.  Bax oligomerization is required for channel-forming activity in liposomes and to trigger cytochrome c release from mitochondria. , 2000, The Biochemical journal.

[34]  M. Minden,et al.  The BH3 domain of BAD fused to the Antennapedia peptide induces apoptosis via its alpha helical structure and independent of Bcl-2 , 2001, Cell Death and Differentiation.

[35]  J. Martinou,et al.  Mitochondria as the central control point of apoptosis. , 2000, Trends in cell biology.

[36]  M. Minami,et al.  Intracellular Bax Translocation after Transient Cerebral Ischemia: Implications for a Role of the Mitochondrial Apoptotic Signaling Pathway in Ischemic Neuronal Death , 2001, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[37]  G. Kroemer,et al.  Inhibition of adenine nucleotide translocator pore function and protection against apoptosis in vivo by an HIV protease inhibitor. , 2005, The Journal of clinical investigation.

[38]  D. Green,et al.  Caspase-mediated loss of mitochondrial function and generation of reactive oxygen species during apoptosis , 2003, The Journal of cell biology.

[39]  Junying Yuan,et al.  Autophagy in cell death: an innocent convict? , 2005, The Journal of clinical investigation.

[40]  Jean-Claude Martinou,et al.  Bid-induced Conformational Change of Bax Is Responsible for Mitochondrial Cytochrome c Release during Apoptosis , 1999, The Journal of cell biology.

[41]  C. Distelhorst,et al.  Bcl-2 on the Endoplasmic Reticulum Regulates Bax Activity by Binding to BH3-only Proteins* , 2003, The Journal of Biological Chemistry.

[42]  G. Kroemer,et al.  Cell permeable BH3-peptides overcome the cytoprotective effect of Bcl-2 and Bcl-XL , 2002, Oncogene.

[43]  Brian J. Smith,et al.  Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. , 2005, Molecular cell.

[44]  P. Clarke,et al.  Developmental cell death: morphological diversity and multiple mechanisms , 2004, Anatomy and Embryology.

[45]  S. Emr,et al.  Autophagy as a regulated pathway of cellular degradation. , 2000, Science.

[46]  Guido Kroemer,et al.  Mitochondrial control of cell death , 2000, Nature Medicine.

[47]  J. Armstrong Mitochondrial membrane permeabilization: the sine qua non for cell death. , 2006, BioEssays : news and reviews in molecular, cellular and developmental biology.

[48]  Erkki Ruoslahti,et al.  Targeting the prostate for destruction through a vascular address , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[49]  John Calvin Reed Dysregulation of apoptosis in cancer. , 1998, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[50]  G. Kroemer,et al.  Dynamic evolution of the adenine nucleotide translocase interactome during chemotherapy-induced apoptosis , 2004, Oncogene.

[51]  Y. Tsujimoto,et al.  BH4 peptide derivative from Bcl-xL attenuates ischemia/reperfusion injury thorough anti-apoptotic mechanism in rat hearts. , 2005, European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery.

[52]  Craig B. Thompson,et al.  Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes , 2004, Nature Cell Biology.

[53]  C. Brenner,et al.  The adenine nucleotide translocase: a central component of the mitochondrial permeability transition pore and key player in cell death. , 2003, Current medicinal chemistry.

[54]  W. Welte,et al.  Complexes between kinases, mitochondrial porin and adenylate translocator in rat brain resemble the permeability transition pore , 1996, FEBS letters.

[55]  Chi Li,et al.  Growth Factor Regulation of Autophagy and Cell Survival in the Absence of Apoptosis , 2005, Cell.

[56]  D. Wallace Mitochondrial diseases in man and mouse. , 1999, Science.

[57]  Tullio Pozzan,et al.  Phosphorylation of BCL‐2 regulates ER Ca2+ homeostasis and apoptosis , 2004, The EMBO journal.

[58]  Shigeomi Shimizu,et al.  Bcl‐2 family: Life‐or‐death switch , 2000, FEBS letters.

[59]  Jeffrey Robbins,et al.  Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death , 2005, Nature.

[60]  C. Brenner,et al.  The adenine nucleotide translocator: a new potential chemotherapeutic target. , 2003, Current drug targets.

[61]  M. Berridge,et al.  Bcl-2 functionally interacts with inositol 1,4,5-trisphosphate receptors to regulate calcium release from the ER in response to inositol 1,4,5-trisphosphate , 2004, The Journal of cell biology.

[62]  G. Kroemer,et al.  Bid acts on the permeability transition pore complex to induce apoptosis , 2000, Oncogene.

[63]  R. Proske,et al.  Regulation of apoptosis by respiration: cytochrome c release by respiratory substrates , 2001, FEBS Letters.

[64]  G. Kroemer,et al.  Adenine nucleotide translocator mediates the mitochondrial membrane permeabilization induced by lonidamine, arsenite and CD437 , 2001, Oncogene.

[65]  G. Calamita,et al.  The Inner Mitochondrial Membrane Has Aquaporin-8 Water Channels and Is Highly Permeable to Water* , 2005, Journal of Biological Chemistry.

[66]  A. Degterev,et al.  The channel of death , 2001, The Journal of cell biology.

[67]  M. Prevost,et al.  Bcl-2 and Bax modulate adenine nucleotide translocase activity. , 2003, Cancer research.

[68]  Tetsuya Watanabe,et al.  Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death , 2005, Nature.

[69]  Luca Scorrano,et al.  A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. , 2002, Developmental cell.

[70]  D. Ferrari,et al.  Apoptosis signaling by death receptors. , 1998, European journal of biochemistry.

[71]  S. R. Datta,et al.  BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis , 2003, Nature.

[72]  G. Kroemer,et al.  The adenine nucleotide translocator in apoptosis. , 2002, Biochimie.

[73]  J. R. Huth,et al.  Discovery of novel inhibitors of Bcl-xL using multiple high-throughput screening platforms. , 2004, Analytical biochemistry.

[74]  A. Halestrap,et al.  The permeability transition pore complex: another view. , 2002, Biochimie.

[75]  Dean P. Jones,et al.  The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore , 2004, Nature.

[76]  B. O’Rourke,et al.  Mitochondrial K(ATP) channels in cell survival and death. , 2005, Journal of molecular and cellular cardiology.

[77]  C. Thompson,et al.  Apoptosis in the pathogenesis and treatment of disease , 1995, Science.

[78]  Y. Ohta,et al.  Suppression of Apoptosis by Cyclophilin D via Stabilization of Hexokinase II Mitochondrial Binding in Cancer Cells* , 2006, Journal of Biological Chemistry.

[79]  G. Kroemer,et al.  Caspases disrupt mitochondrial membrane barrier function , 1998, FEBS letters.

[80]  F. Ichas,et al.  Regulation of the Permeability Transition Pore in Skeletal Muscle Mitochondria , 1998, The Journal of Biological Chemistry.

[81]  B. Levine Eating Oneself and Uninvited Guests Autophagy-Related Pathways in Cellular Defense , 2005, Cell.

[82]  D. Andrews,et al.  Bcl-2 and Bax regulate the channel activity of the mitochondrial adenine nucleotide translocator , 2000, Oncogene.

[83]  A. Wyllie,et al.  Apoptosis: A Basic Biological Phenomenon with Wide-ranging Implications in Tissue Kinetics , 1972, British Journal of Cancer.

[84]  Sherry F. Grissom,et al.  The mitochondrial permeability transition initiates autophagy in rat hepatocytes , 2001, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[85]  D. Brenner,et al.  The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. , 1998, Biochimica et biophysica acta.

[86]  P. Nowell,et al.  Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. , 1984, Science.

[87]  D. Green,et al.  The Pathophysiology of Mitochondrial Cell Death , 2004, Science.

[88]  M. Zoratti,et al.  Electrophysiology of the inner mitochondrial membrane , 1994, Journal of bioenergetics and biomembranes.

[89]  S. Pervaiz,et al.  Reactive oxygen intermediates regulate cellular response to apoptotic stimuli: an hypothesis. , 1999, Free radical research.

[90]  Guido Kroemer,et al.  Control of Mitochondrial Membrane Permeabilization by Adenine Nucleotide Translocator Interacting with HIV-1 Viral Protein R and Bcl-2 , 2001, The Journal of experimental medicine.

[91]  M. Zoratti,et al.  The mitochondrial permeability transition. , 1995, Biochimica et biophysica acta.

[92]  G. Kroemer,et al.  Interaction between the HIV‐1 Protein Vpr and the Adenine Nucleotide Translocator , 2006, Chemical biology & drug design.

[93]  G. Kroemer,et al.  Propionibacteria induce apoptosis of colorectal carcinoma cells via short-chain fatty acids acting on mitochondria , 2002, Cell Death and Differentiation.

[94]  M. Prevost,et al.  Real-time flow cytometry analysis of permeability transition in isolated mitochondria. , 2004, Experimental cell research.

[95]  G. Kroemer,et al.  Mitochondria in chemotherapy-induced apoptosis: a prospective novel target of cancer therapy (review). , 1998, International journal of oncology.

[96]  A. Letai Pharmacological manipulation of Bcl-2 family members to control cell death. , 2005, The Journal of clinical investigation.

[97]  Michael D. Schneider,et al.  Bcl-2 Antiapoptotic Proteins Inhibit Beclin 1-Dependent Autophagy , 2005, Cell.

[98]  P. Bernardi,et al.  Properties of the Permeability Transition Pore in Mitochondria Devoid of Cyclophilin D* , 2005, Journal of Biological Chemistry.

[99]  John C Reed,et al.  Bcl-2 family proteins , 1998, Oncogene.

[100]  C. Rocher,et al.  Mobilization of Adenine Nucleotide Translocators as Molecular Bases of the Biochemical Threshold Effect Observed in Mitochondrial Diseases* , 2004, Journal of Biological Chemistry.

[101]  E. Kieff,et al.  A cytomegalovirus-encoded mitochondria-localized inhibitor of apoptosis structurally unrelated to Bcl-2. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[102]  S. Korsmeyer,et al.  An inhibitor of Bcl-2 family proteins induces regression of solid tumours , 2005, Nature.

[103]  S. Cory,et al.  Killing cancer cells by flipping the Bcl-2/Bax switch. , 2005, Cancer cell.

[104]  S. Korsmeyer,et al.  Activation of Apoptosis in Vivo by a Hydrocarbon-Stapled BH3 Helix , 2004, Science.

[105]  G. Kroemer,et al.  Mitochondrial membrane permeabilization by HIV-1 Vpr. , 2004, Mitochondrion.

[106]  M. Crompton,et al.  Biphasic translocation of Bax to mitochondria. , 2002, The Biochemical journal.

[107]  A. Phelan,et al.  Particle assembly incorporating a VP22-BH3 fusion protein, facilitating intracellular delivery, regulated release, and apoptosis. , 2003, Molecular therapy : the journal of the American Society of Gene Therapy.

[108]  D. Green,et al.  Pharmacological manipulation of cell death: clinical applications in sight? , 2005, The Journal of clinical investigation.

[109]  M. Crompton,et al.  Mitochondrial intermembrane junctional complexes and their involvement in cell death. , 2002, Biochimie.

[110]  J C Reed,et al.  Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. , 1998, Science.

[111]  A. Matter,et al.  Tumor angiogenesis as a therapeutic target. , 2001, Drug discovery today.

[112]  J. Mazat,et al.  Mitochondria Are Excitable Organelles Capable of Generating and Conveying Electrical and Calcium Signals , 1997, Cell.

[113]  Albert Loffet,et al.  Peptides as Drugs: Is There a Market? , 2002, Journal of peptide science : an official publication of the European Peptide Society.

[114]  Junying Yuan,et al.  Apoptosis in the nervous system , 2000, Nature.

[115]  Y. Ko,et al.  Mitochondrial ATP Synthasome , 2003, The Journal of Biological Chemistry.

[116]  Xiaodong Wang,et al.  Apaf-1, a Human Protein Homologous to C. elegans CED-4, Participates in Cytochrome c–Dependent Activation of Caspase-3 , 1997, Cell.

[117]  X. Leverve,et al.  Three Classes of Ubiquinone Analogs Regulate the Mitochondrial Permeability Transition Pore through a Common Site* , 2000, The Journal of Biological Chemistry.

[118]  J C Reed,et al.  Antisense-mediated inhibition of BCL2 protooncogene expression and leukemic cell growth and survival: comparisons of phosphodiester and phosphorothioate oligodeoxynucleotides. , 1990, Cancer research.

[119]  Erkki Ruoslahti,et al.  Anti-cancer activity of targeted pro-apoptotic peptides , 1999, Nature Medicine.

[120]  Keith D Garlid,et al.  Mitochondrial potassium transport: the K(+) cycle. , 2003, Biochimica et biophysica acta.

[121]  Zahra Zakeri,et al.  Apoptosis, autophagy, and more. , 2004, The international journal of biochemistry & cell biology.