Computational strategies for object recognition

This article reviews the available methods for automated identification of objects in digital images. The techniques are classified into groups according to the nature of the computational strategy used. Four classes are proposed: (1) the simplest strategies, which work on data appropriate for feature vector classification, (2) methods that match models to symbolic data structures for situations involving reliable data and complex models, (3) approaches that fit models to the photometry and are appropriate for noisy data and simple models, and (4) combinations of these strategies, which must be adopted in complex situations. Representative examples of various methods are summarized, and the classes of strategies with respect to their appropriateness for particular applications.

[1]  J. M. Tenenbaum,et al.  Map-guided interpretation of remotely-sensed imagery , 1899 .

[2]  Stuart E. Dreyfus,et al.  Applied Dynamic Programming , 1965 .

[3]  R. Bellman Dynamic programming. , 1957, Science.

[4]  Azriel Rosenfeld,et al.  Picture Processing by Computer , 1969, CSUR.

[5]  M. B. Clowes,et al.  On Seeing Things , 1971, Artif. Intell..

[6]  Martin A. Fischler,et al.  The Representation and Matching of Pictorial Structures , 1973, IEEE Transactions on Computers.

[7]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[8]  A. Macworth Interpreting pictures of polyhedral scenes , 1973 .

[9]  Alan K. Mackworth Interpreting Pictures of Polyhedral Scenes , 1973, IJCAI.

[10]  Julius T. Tou,et al.  Pattern Recognition Principles , 1974 .

[11]  Azriel Rosenfeld,et al.  Scene Labeling by Relaxation Operations , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[12]  Harry G. Barrow,et al.  Experiments in Interpretation-Guided Segmentation , 1977, Artificial Intelligence.

[13]  L. Quam Road Tracking and Anomaly Detection in Aerial Imagery , 1978 .

[14]  Keith Price,et al.  Picture Segmentation Using a Recursive Region Splitting Method , 1998 .

[15]  S. G. Wheeler,et al.  Crop classification with LANDSAT multispectral scanner data , 1978, Pattern Recognit..

[16]  Makoto Nagao,et al.  A Structural Analysis of Complex Aerial Photographs , 1980, Advanced Applications in Pattern Recognition.

[17]  Takeo Kanade,et al.  Region segmentation: Signal vs semantics , 1980 .

[18]  Richard W. Hamming,et al.  Coding and Information Theory , 1980 .

[19]  Barr,et al.  Superquadrics and Angle-Preserving Transformations , 1981, IEEE Computer Graphics and Applications.

[20]  Dana H. Ballard,et al.  Generalizing the Hough transform to detect arbitrary shapes , 1981, Pattern Recognit..

[21]  Martin A. Fischler,et al.  Detection of roads and linear structures in low-resolution aerial imagery using a multisource knowledge integration technique☆ , 1981 .

[22]  On Shapes , 1981, IJCAI.

[23]  Ernest L. Hall,et al.  Computer Image Processing and Recognition , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Olivier D. Faugeras,et al.  Improving Consistency and Reducing Ambiguity in Stochastic Labeling: An Optimization Approach , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  R.W. Ehrich,et al.  Computer image processing and recognition , 1981, Proceedings of the IEEE.

[26]  Rodney A. Brooks,et al.  Symbolic Reasoning Among 3-D Models and 2-D Images , 1981, Artif. Intell..

[27]  Daniel Sabbah,et al.  Design Of A Highly Parallel Visual Recognition System , 1981, IJCAI.

[28]  Thomas O. Binford,et al.  Survey of Model-Based Image Analysis Systems , 1982 .

[29]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[30]  Robert C. Bolles,et al.  3DPO: A Three- Dimensional Part Orientation System , 1986, IJCAI.

[31]  Rodney A. Brooks,et al.  Model-Based Three-Dimensional Interpretations of Two-Dimensional Images , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Judea Pearl,et al.  Heuristics : intelligent search strategies for computer problem solving , 1984 .

[33]  Prasanna G. Mulgaonkar,et al.  Matching 'sticks, plates and blobs' objects using geometric and relational constraints , 1984, Image and Vision Computing.

[34]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  Martin D. Levine,et al.  Low Level Image Segmentation: An Expert System , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  Azriel Rosenfeld,et al.  Image analysis: Problems, progress and prospects , 1984, Pattern Recognit..

[37]  Jesfis Peral,et al.  Heuristics -- intelligent search strategies for computer problem solving , 1984 .

[38]  Makoto Nagao,et al.  Control strategies in pattern analysis , 1984, Pattern Recognit..

[39]  N. Nandhakumar,et al.  The artificial intelligence approach to pattern recognition--a perspective and an overview , 1985, Pattern Recognit..

[40]  Kenneth I. Laws,et al.  Goal-Directed Textured-Image Segmentation , 1985, Other Conferences.

[41]  Josef Kittler,et al.  Relaxation labelling algorithms - a review , 1986, Image Vis. Comput..

[42]  J. Kittler,et al.  RELAXATION LABELING ALGORITHMS - A REVIEW , 1985 .

[43]  大田 友一,et al.  Knowledge-based interpretation of outdoor natural color scenes , 1985 .

[44]  Takeo Kanade,et al.  Incremental Reconstruction of 3D Scenes from Multiple, Complex Images , 1986, Artif. Intell..

[45]  E. Backer,et al.  QUANTITATIVE EVALUATION OF EDGE DETECTION BY DYNAMIC PROGRAMMING , 1986 .

[46]  Olivier D. Faugeras,et al.  HYPER: A New Approach for the Recognition and Positioning of Two-Dimensional Objects , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[47]  Edith Schonberg,et al.  Two-Dimensional, Model-Based, Boundary Matching Using Footprints , 1986 .

[48]  King-Sun Fu,et al.  An Image Understanding System Using Attributed Symbolic Representation and Inexact Graph-Matching , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[49]  John K. Tsotsos,et al.  Knowledge-based landmarking of cephalograms. , 1986, Computers and biomedical research, an international journal.

[50]  John A. Richards,et al.  Remote Sensing Digital Image Analysis , 1986 .

[51]  Larry S. Davis,et al.  Hypothesis integration in image understanding systems , 1985, Comput. Vis. Graph. Image Process..

[52]  Ronald Lumia,et al.  Model-based strategies for high-level robot vision , 1986, Comput. Vis. Graph. Image Process..

[53]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[54]  Pascal Fua,et al.  Using Generic Geometric Models for Intelligent Shape Extraction , 1987, AAAI.

[55]  David M. McKeown,et al.  Automating Knowledge Acquisition For Aerial Image Interpretation , 1987, Photonics West - Lasers and Applications in Science and Engineering.

[56]  Andrew P. Witkin,et al.  Energy constraints on parameterized models , 1987, SIGGRAPH.

[57]  Henri Maître,et al.  Improving dynamic programming to solve image registration , 1987, Pattern Recognit..

[58]  David G. Lowe,et al.  Three-Dimensional Object Recognition from Single Two-Dimensional Images , 1987, Artif. Intell..

[59]  Ramakant Nevatia,et al.  Detecting Runways in Aerial Images , 1987, AAAI.

[60]  D. W. Murray Model-based recognition using 3D shape alone , 1987, Comput. Vis. Graph. Image Process..

[61]  Paul Suetens,et al.  Toward an expert system for chromosome analysis , 1987, Knowl. Based Syst..

[62]  J. McDermott,et al.  Rule-Based Interpretation of Aerial Imagery , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[63]  J. Mantas,et al.  Methodologies in pattern recognition and image analysis - A brief survey , 1987, Pattern Recognit..

[64]  David W. Murray,et al.  Scene Segmentation from Visual Motion Using Global Optimization , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[65]  Zhen Zhang,et al.  A rule-based interpretation system for segmentation of seismic images , 1987, Pattern Recognit..

[66]  Martin D. Levine,et al.  Line detection in digital pictures: A hypothesis prediction/verification paradigm , 1987, Comput. Vis. Graph. Image Process..

[67]  ANDREW M. WALLACE,et al.  A comparison of approaches to high-level image interpretation , 1988, Pattern Recognit..

[68]  Demetri Terzopoulos,et al.  Constraints on Deformable Models: Recovering 3D Shape and Nonrigid Motion , 1988, Artif. Intell..

[69]  Anil K. Jain,et al.  Evidence-Based Recognition of 3-D Objects , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[70]  Ramakant Nevatia,et al.  Detecting buildings in aerial images , 1988, Comput. Vis. Graph. Image Process..

[71]  Josef Kittler,et al.  A survey of the hough transform , 1988, Comput. Vis. Graph. Image Process..

[72]  Hiromitsu Yamada,et al.  Recognition of Kidney Glomerulus by Dynamic Programming Matching Method , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[73]  David M. McKeown,et al.  Cooperative methods for road tracking in aerial imagery , 1988, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.

[74]  Ramesh C. Jain,et al.  Knowledge representation and control in computer vision systems , 1988, IEEE Expert.

[75]  Yehezkel Lamdan,et al.  Geometric Hashing: A General And Efficient Model-based Recognition Scheme , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[76]  Ramakant Nevatia,et al.  Matching 3-D objects using surface descriptions , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[77]  Ramakant Nevatia,et al.  Using Perceptual Organization to Extract 3-D Structures , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[78]  A. Oosterlinck,et al.  On knowledge-based improvement of biomedical pattern recognition-a case study , 1989, [1989] Proceedings. The Fifth Conference on Artificial Intelligence Applications.

[79]  Pascal Fua,et al.  Object Delineation as an Optimization Problem , 1989 .

[80]  Paul Suetens,et al.  Recognition of the coronary blood vessels on angiograms using hierarchical model-based iconic search , 1989, Proceedings CVPR '89: IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[81]  Ramakant Nevatia,et al.  Recognizing 3-D Objects Using Surface Descriptions , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[82]  Radu Horaud,et al.  Stereo Correspondence Through Feature Grouping and Maximal Cliques , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[83]  Paolo Grattoni,et al.  A non-sequential contour detection with a priori knowledge , 1989, Pattern Recognit. Lett..

[84]  Terry E. Weymouth,et al.  A parallel algorithm for determining two-dimensional object positions using incomplete information about their boundaries , 1989, Pattern Recognit..

[85]  P Suetens,et al.  Model-based quantification of myocardial perfusion images from SPECT. , 1989, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[86]  Arnold W. M. Smeulders,et al.  Human chromosome classification based on local band descriptors , 1989, Pattern Recognit. Lett..

[87]  Robert C. Bolles,et al.  Representation space: an approach to the integration of visual information , 1989, Proceedings CVPR '89: IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[88]  Takashi Matsuyama Expert systems for image processing: Knowledge-based composition of image analysis processes , 1989, Comput. Vis. Graph. Image Process..

[89]  Bernard Meltzer,et al.  Analogical Representations of Naive Physics , 1989, Artif. Intell..

[90]  W. Eric L. Grimson,et al.  On the Sensitivity of the Hough Transform for Object Recognition , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[91]  C. Dainty The New Physical Optics Notebook: Tutorials in Fourier Optics , 1990 .

[92]  Steven Roman,et al.  Coding and information theory , 1992 .