Tensor Decompositions and Applications

This survey provides an overview of higher-order tensor decompositions, their applications, and available software. A tensor is a multidimensional or $N$-way array. Decompositions of higher-order tensors (i.e., $N$-way arrays with $N \geq 3$) have applications in psycho-metrics, chemometrics, signal processing, numerical linear algebra, computer vision, numerical analysis, data mining, neuroscience, graph analysis, and elsewhere. Two particular tensor decompositions can be considered to be higher-order extensions of the matrix singular value decomposition: CANDECOMP/PARAFAC (CP) decomposes a tensor as a sum of rank-one tensors, and the Tucker decomposition is a higher-order form of principal component analysis. There are many other tensor decompositions, including INDSCAL, PARAFAC2, CANDELINC, DEDICOM, and PARATUCK2 as well as nonnegative variants of all of the above. The N-way Toolbox, Tensor Toolbox, and Multilinear Engine are examples of software packages for working with tensors.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  F. L. Hitchcock The Expression of a Tensor or a Polyadic as a Sum of Products , 1927 .

[3]  F. L. Hitchcock Multiple Invariants and Generalized Rank of a P‐Way Matrix or Tensor , 1928 .

[4]  C. Eckart,et al.  The approximation of one matrix by another of lower rank , 1936 .

[5]  R. Cattell “Parallel proportional profiles” and other principles for determining the choice of factors by rotation , 1944 .

[6]  R. Cattell The three basic factor-analytic research designs-their interrelations and derivatives. , 1952, Psychological bulletin.

[7]  H. Kaiser The varimax criterion for analytic rotation in factor analysis , 1958 .

[8]  J. Levin Three-mode factor analysis. , 1965, Psychological bulletin.

[9]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[10]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[11]  Donald Ervin Knuth,et al.  The Art of Computer Programming, Volume II: Seminumerical Algorithms , 1970 .

[12]  V. Strassen Gaussian elimination is not optimal , 1969 .

[13]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[14]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[15]  Richard A. Harshman,et al.  Determination and Proof of Minimum Uniqueness Conditions for PARAFAC1 , 1972 .

[16]  V. Pereyra,et al.  Efficient Computer Manipulation of Tensor Products with Applications to Multidimensional Approximation , 1973 .

[17]  Julian D. Laderman,et al.  A noncommutative algorithm for multiplying $3 \times 3$ matrices using 23 multiplications , 1976 .

[18]  J. Kruskal Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics , 1977 .

[19]  G. Schachtel,et al.  A Noncommutative Algorithm for Multiplying 5*5 Matrices Using 103 Multiplications , 1978, Inf. Process. Lett..

[20]  T. Howell,et al.  Global properties of tensor rank , 1978 .

[21]  Joseph JáJá Optimal Evaluation of Pairs of Bilinear Forms , 1979, SIAM J. Comput..

[22]  Grazia Lotti,et al.  O(n2.7799) Complexity for n*n Approximate Matrix Multiplication , 1979, Inf. Process. Lett..

[23]  J. Kruskal,et al.  Candelinc: A general approach to multidimensional analysis of many-way arrays with linear constraints on parameters , 1980 .

[24]  J. Leeuw,et al.  Principal component analysis of three-mode data by means of alternating least squares algorithms , 1980 .

[25]  E. Davidson,et al.  Strategies for analyzing data from video fluorometric monitoring of liquid chromatographic effluents , 1981 .

[26]  Arnold Schönhage,et al.  Partial and Total Matrix Multiplication , 1981, SIAM J. Comput..

[27]  D. Arnold Notation and preliminaries , 1982 .

[28]  R. Harshman,et al.  A Model for the Analysis of Asymmetric Data in Marketing Research , 1982 .

[29]  Pieter M. Kroonenberg,et al.  Three-mode principal component analysis : theory and applications , 1983 .

[30]  R. A. Harshman,et al.  Data preprocessing and the extended PARAFAC model , 1984 .

[31]  H. Neudecker,et al.  An approach ton-mode components analysis , 1986 .

[32]  S. T. Dumais,et al.  Using latent semantic analysis to improve access to textual information , 1988, CHI '88.

[33]  J. Leeuw,et al.  Explicit candecomp/parafac solutions for a contrived 2 × 2 × 2 array of rank three , 1988 .

[34]  J Möcks,et al.  Topographic components model for event-related potentials and some biophysical considerations. , 1988, IEEE transactions on bio-medical engineering.

[35]  A. Agresti,et al.  Multiway Data Analysis , 1989 .

[36]  H. Kiers An alternating least squares algorithm for fitting the two- and three-way dedicom model and the idioscal model , 1989 .

[37]  J. Kruskal Rank, decomposition, and uniqueness for 3-way and n -way arrays , 1989 .

[38]  J. Kruskal,et al.  A two-stage procedure incorporating good features of both trilinear and quadrilinear models , 1989 .

[39]  J. Kruskal,et al.  How 3-MFA data can cause degenerate parafac solutions, among other relationships , 1989 .

[40]  Johan Håstad,et al.  Tensor Rank is NP-Complete , 1989, ICALP.

[41]  Richard A. Harshman,et al.  Indexing by Latent Semantic Analysis , 1990, J. Am. Soc. Inf. Sci..

[42]  B. Kowalski,et al.  Tensorial resolution: A direct trilinear decomposition , 1990 .

[43]  Y. Takane,et al.  A generalization of Takane's algorithm for dedicom , 1990 .

[44]  Nader H. Bshouty,et al.  Maximal Rank of m x n x (mn - k) Tensors , 1990, SIAM J. Comput..

[45]  J. Berge,et al.  Kruskal's polynomial for 2×2×2 arrays and a generalization to 2×n×n arrays , 1991 .

[46]  S. Leurgans,et al.  Multilinear Models: Applications in Spectroscopy , 1992 .

[47]  M. Narasimhan Principles of Continuum Mechanics , 1992 .

[48]  H. Kiers TUCKALS core rotations and constrained TUCKALS modelling , 1992 .

[49]  Michael Greenacre,et al.  Multiway data analysis , 1992 .

[50]  R. Henrion Body diagonalization of core matrices in three‐way principal components analysis: Theoretical bounds and simulation , 1993 .

[51]  H. Kiers An alternating least squares algorithms for PARAFAC2 and three-way DEDICOM , 1993 .

[52]  Y. Takane,et al.  Constrained DEDICOM , 1993 .

[53]  R. Henrion N-WAY PRINCIPAL COMPONENT ANALYSIS : THEORY, ALGORITHMS AND APPLICATIONS , 1994 .

[54]  B. Kowalski,et al.  Theory of medium‐rank second‐order calibration with restricted‐Tucker models , 1994 .

[55]  C. D. Boor,et al.  Polynomial interpolation in several variables , 1994 .

[56]  Ben C. Mitchell,et al.  Slowly converging parafac sequences: Swamps and two‐factor degeneracies , 1994 .

[57]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[58]  P. Paatero,et al.  Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values† , 1994 .

[59]  Susan T. Dumais,et al.  Using Linear Algebra for Intelligent Information Retrieval , 1995, SIAM Rev..

[60]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[61]  L. Lathauwer,et al.  From Matrix to Tensor : Multilinear Algebra and Signal Processing , 1996 .

[62]  Pierre Comon,et al.  Decomposition of quantics in sums of powers of linear forms , 1996, Signal Process..

[63]  J. Berge,et al.  Some uniqueness results for PARAFAC2 , 1996 .

[64]  R. Harshman,et al.  Uniqueness proof for a family of models sharing features of Tucker's three-mode factor analysis and PARAFAC/candecomp , 1996 .

[65]  W. Rayens,et al.  Two-factor degeneracies and a stabilization of PARAFAC , 1997 .

[66]  R. Bro PARAFAC. Tutorial and applications , 1997 .

[67]  H. Kiers Weighted least squares fitting using ordinary least squares algorithms , 1997 .

[68]  R. Harshman,et al.  Relating two proposed methods for speedup of algorithms for fitting two- and three-way principal component and related multilinear models , 1997 .

[69]  R. Bro,et al.  A fast non‐negativity‐constrained least squares algorithm , 1997 .

[70]  P. Paatero A weighted non-negative least squares algorithm for three-way ‘PARAFAC’ factor analysis , 1997 .

[71]  J. Berge,et al.  Uniqueness of three-mode factor models with sparse cores: The 3 × 3 × 3 case , 1997 .

[72]  Rasmus Bro,et al.  Improving the speed of multiway algorithms: Part II: Compression , 1998 .

[73]  Hai-Long Wu,et al.  An alternating trilinear decomposition algorithm with application to calibration of HPLC–DAD for simultaneous determination of overlapped chlorinated aromatic hydrocarbons , 1998 .

[74]  H. Kiers Joint Orthomax Rotation of the Core and Component Matrices Resulting from Three-mode Principal Components Analysis , 1998 .

[75]  J. Berge,et al.  A case of extreme simplicity of the core matrix in three-mode principal components analysis , 1998 .

[76]  Henk A. L. Kiers,et al.  A three–step algorithm for CANDECOMP/PARAFAC analysis of large data sets with multicollinearity , 1998 .

[77]  Rasmus Bro,et al.  Improving the speed of multi-way algorithms:: Part I. Tucker3 , 1998 .

[78]  Rasmus Bro,et al.  MULTI-WAY ANALYSIS IN THE FOOD INDUSTRY Models, Algorithms & Applications , 1998 .

[79]  Claus A. Andersson,et al.  PARAFAC2—Part II. Modeling chromatographic data with retention time shifts , 1999 .

[80]  P. Regalia,et al.  Tensor displacement structures and polyspectral matching , 1999 .

[81]  Claus A. Andersson,et al.  A general algorithm for obtaining simple structure of core arrays in N -way PCA with application to fluorometric data , 1999 .

[82]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[83]  P. Paatero The Multilinear Engine—A Table-Driven, Least Squares Program for Solving Multilinear Problems, Including the n-Way Parallel Factor Analysis Model , 1999 .

[84]  J. Berge,et al.  Simplicity of core arrays in three-way principal component analysis and the typical rank of p×q×2 arrays , 1999 .

[85]  Thomas Kailath,et al.  Fast reliable algorithms for matrices with structure , 1999 .

[86]  R. Bro,et al.  PARAFAC2—Part I. A direct fitting algorithm for the PARAFAC2 model , 1999 .

[87]  Rasmus Bro,et al.  The N-way Toolbox for MATLAB , 2000 .

[88]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[89]  J. Vandewalle,et al.  An introduction to independent component analysis , 2000 .

[90]  Jian-hui Jiang,et al.  Three‐way data resolution by alternating slice‐wise diagonalization (ASD) method , 2000 .

[91]  H. Kiers Towards a standardized notation and terminology in multiway analysis , 2000 .

[92]  Tomas Sauer,et al.  Polynomial interpolation in several variables , 2000, Adv. Comput. Math..

[93]  J. Berge,et al.  The typical rank of tall three-way arrays , 2000 .

[94]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[95]  N. Sidiropoulos,et al.  On the uniqueness of multilinear decomposition of N‐way arrays , 2000 .

[96]  Nikos D. Sidiropoulos,et al.  Blind PARAFAC receivers for DS-CDMA systems , 2000, IEEE Trans. Signal Process..

[97]  P. Paatero Construction and analysis of degenerate PARAFAC models , 2000 .

[98]  Nikos D. Sidiropoulos,et al.  Parallel factor analysis in sensor array processing , 2000, IEEE Trans. Signal Process..

[99]  C. Loan The ubiquitous Kronecker product , 2000 .

[100]  Max Welling,et al.  Positive tensor factorization , 2001, Pattern Recognit. Lett..

[101]  Gene H. Golub,et al.  Rank-One Approximation to High Order Tensors , 2001, SIAM J. Matrix Anal. Appl..

[102]  Amnon Shashua,et al.  Linear image coding for regression and classification using the tensor-rank principle , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[103]  Tamara G. Kolda,et al.  Orthogonal Tensor Decompositions , 2000, SIAM J. Matrix Anal. Appl..

[104]  Nikos D. Sidiropoulos,et al.  Cramer-Rao lower bounds for low-rank decomposition of multidimensional arrays , 2001, IEEE Trans. Signal Process..

[105]  Richard A. Harshman,et al.  An index formalism that generalizes the capabilities of matrix notation and algebra to n‐way arrays , 2001 .

[106]  Barry M. Wise,et al.  Application of PARAFAC2 to fault detection and diagnosis in semiconductor etch , 2001 .

[107]  Joos Vandewalle,et al.  Independent component analysis and (simultaneous) third-order tensor diagonalization , 2001, IEEE Trans. Signal Process..

[108]  I. Mechelen,et al.  Three-way component analysis: principles and illustrative application. , 2001, Psychological methods.

[109]  Demetri Terzopoulos,et al.  Multilinear Analysis of Image Ensembles: TensorFaces , 2002, ECCV.

[110]  J. Berge,et al.  On uniqueness in candecomp/parafac , 2002 .

[111]  Demetri Terzopoulos,et al.  Multilinear image analysis for facial recognition , 2002, Object recognition supported by user interaction for service robots.

[112]  Athina P. Petropulu,et al.  Blind Identification of Convolutive MIMO Systems with 3 Sources and 2 Sensors , 2002, EURASIP J. Adv. Signal Process..

[113]  Chun-Yuan Lin,et al.  Efficient Representation Scheme for Multidimensional Array Operations , 2002, IEEE Trans. Computers.

[114]  M. Alex O. Vasilescu Human motion signatures: analysis, synthesis, recognition , 2002, Object recognition supported by user interaction for service robots.

[115]  N. Sidiropoulos,et al.  Maximum likelihood fitting using ordinary least squares algorithms , 2002 .

[116]  Martin J. Mohlenkamp,et al.  Numerical operator calculus in higher dimensions , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[117]  Pierre Comon,et al.  Tensor Decompositions, State of the Art and Applications , 2002 .

[118]  R. Harshman,et al.  ‘Stretch’ vs ‘slice’ methods for representing three‐way structure via matrix notation , 2002 .

[119]  Katsushi Ikeuchi,et al.  Appearance Based Object Modeling using Texture Database: Acquisition Compression and Rendering , 2002, Rendering Techniques.

[120]  Ilghiz Ibraghimov,et al.  Application of the three‐way decomposition for matrix compression , 2002, Numer. Linear Algebra Appl..

[121]  Nikos D. Sidiropoulos,et al.  Khatri-Rao space-time codes , 2002, IEEE Trans. Signal Process..

[122]  Phillip A. Regalia,et al.  On the Best Rank-1 Approximation of Higher-Order Supersymmetric Tensors , 2001, SIAM J. Matrix Anal. Appl..

[123]  Lars Grasedyck,et al.  Existence and Computation of Low Kronecker-Rank Approximations for Large Linear Systems of Tensor Product Structure , 2004, Computing.

[124]  Henk A L Kiers,et al.  A fast method for choosing the numbers of components in Tucker3 analysis. , 2003, The British journal of mathematical and statistical psychology.

[125]  Tamara G. Kolda,et al.  A Counterexample to the Possibility of an Extension of the Eckart-Young Low-Rank Approximation Theorem for the Orthogonal Rank Tensor Decomposition , 2002, SIAM J. Matrix Anal. Appl..

[126]  R. Bro,et al.  Practical aspects of PARAFAC modeling of fluorescence excitation‐emission data , 2003 .

[127]  R. Bro,et al.  Centering and scaling in component analysis , 2003 .

[128]  M. SIAMJ. A COUNTEREXAMPLE TO THE POSSIBILITY OF AN EXTENSION OF THE ECKART – YOUNG LOW-RANK APPROXIMATION THEOREM FOR THE ORTHOGONAL RANK TENSOR DECOMPOSITION , 2003 .

[129]  R. Bro,et al.  A new efficient method for determining the number of components in PARAFAC models , 2003 .

[130]  Lorenzo J. Vega-Montoto,et al.  Maximum likelihood parallel factor analysis (MLPARAFAC) , 2003 .

[131]  Chun-Yuan Lin,et al.  Efficient Data Compression Methods for Multidimensional Sparse Array Operations Based on the EKMR Scheme , 2003, IEEE Trans. Computers.

[132]  Markus Bläser,et al.  On the complexity of the multiplication of matrices of small formats , 2003, J. Complex..

[133]  Narendra Ahuja,et al.  Facial expression decomposition , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[134]  R. Harshman,et al.  Shifted factor analysis—Part I: Models and properties , 2003 .

[135]  Rasmus Bro,et al.  Recent developments in CANDECOMP/PARAFAC algorithms: a critical review , 2003 .

[136]  Demetri Terzopoulos,et al.  Multilinear subspace analysis of image ensembles , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[137]  Walter Landry,et al.  Implementing a high performance tensor library , 2003, Sci. Program..

[138]  J. Nagy,et al.  Kronecker Product Approximation for Three-Dimensional Imaging Applications , 2004 .

[139]  Narendra Ahuja,et al.  Compact representation of multidimensional data using tensor rank-one decomposition , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[140]  Demetri Terzopoulos,et al.  TensorTextures: multilinear image-based rendering , 2004, ACM Trans. Graph..

[141]  J. Berge,et al.  Partial uniqueness in CANDECOMP/PARAFAC , 2004 .

[142]  P. Comon CANONICAL TENSOR DECOMPOSITIONS , 2004 .

[143]  Fumikazu Miwakeichi,et al.  Concurrent EEG/fMRI analysis by multiway Partial Least Squares , 2004, NeuroImage.

[144]  Fumikazu Miwakeichi,et al.  Decomposing EEG data into space–time–frequency components using Parallel Factor Analysis , 2004, NeuroImage.

[145]  Nikos D. Sidiropoulos,et al.  Kruskal's permutation lemma and the identification of CANDECOMP/PARAFAC and bilinear models with constant modulus constraints , 2004, IEEE Transactions on Signal Processing.

[146]  R. Rocci A general algorithm to fit constrained DEDICOM models , 2004 .

[147]  Amy Nicole Langville,et al.  A Kronecker product approximate preconditioner for SANs , 2004, Numer. Linear Algebra Appl..

[148]  Joos Vandewalle,et al.  Computation of the Canonical Decomposition by Means of a Simultaneous Generalized Schur Decomposition , 2005, SIAM J. Matrix Anal. Appl..

[149]  Berkant Savas Analyses and Tests of Handwritten Digit Recognition Algorithms , 2004 .

[150]  L. Lathauwer,et al.  Dimensionality reduction in higher-order signal processing and rank-(R1,R2,…,RN) reduction in multilinear algebra , 2004 .

[151]  J. Berge,et al.  Typical rank and indscal dimensionality for symmetric three-way arrays of order I×2×2 or I×3×3 , 2004 .

[152]  William S Rayens,et al.  Structure-seeking multilinear methods for the analysis of fMRI data , 2004, NeuroImage.

[153]  Demetri Terzopoulos,et al.  Multilinear independent components analysis , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[154]  Huan Liu,et al.  CubeSVD: a novel approach to personalized Web search , 2005, WWW '05.

[155]  E. C. Ron,et al.  From Vectors to Tensors , 2005 .

[156]  Tamara G. Kolda,et al.  Higher-order Web link analysis using multilinear algebra , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[157]  Andrew Lumsdaine,et al.  MultiArray: a C++ library for generic programming with arrays , 2005, Softw. Pract. Exp..

[158]  Martin J. Mohlenkamp,et al.  Algorithms for Numerical Analysis in High Dimensions , 2005, SIAM J. Sci. Comput..

[159]  Pierre Comon,et al.  Enhanced Line Search: A Novel Method to Accelerate PARAFAC , 2008, SIAM J. Matrix Anal. Appl..

[160]  Zheng Chen,et al.  Text representation: from vector to tensor , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[161]  Santosh S. Vempala,et al.  Tensor decomposition and approximation schemes for constraint satisfaction problems , 2005, STOC '05.

[162]  Tamir Hazan,et al.  Non-negative tensor factorization with applications to statistics and computer vision , 2005, ICML.

[163]  Salah Bourennane,et al.  Multidimensional filtering based on a tensor approach , 2005, Signal Process..

[164]  Rasmus Bro,et al.  CuBatch, a MATLAB® interface for n-mode data analysis , 2005 .

[165]  Bülent Yener,et al.  Modeling and Multiway Analysis of Chatroom Tensors , 2005, ISI.

[166]  Tamir Hazan,et al.  Sparse image coding using a 3D non-negative tensor factorization , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[167]  Lek-Heng Lim,et al.  Singular values and eigenvalues of tensors: a variational approach , 2005, 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005..

[168]  J. Landsberg The border rank of the multiplication of 2×2 matrices is seven , 2005 .

[169]  C. F. Beckmann,et al.  Tensorial extensions of independent component analysis for multisubject FMRI analysis , 2005, NeuroImage.

[170]  Andrew Lumsdaine,et al.  MultiArray: a Cpp library for generic programming with arrays , 2005 .

[171]  R. Bro,et al.  PARAFAC and missing values , 2005 .

[172]  Hanspeter Pfister,et al.  Face transfer with multilinear models , 2005, ACM Trans. Graph..

[173]  Daniel Graupe,et al.  Topographic component (Parallel Factor) analysis of multichannel evoked potentials: Practical issues in trilinear spatiotemporal decomposition , 2005, Brain Topography.

[174]  Boris N. Khoromskij,et al.  Hierarchical Kronecker tensor-product approximations , 2005, J. Num. Math..

[175]  J. R. Ruiz-Tolosa,et al.  From Vectors to Tensors , 2005 .

[176]  D. Fitzgerald,et al.  Non-negative Tensor Factorisation for Sound Source Separation , 2005 .

[177]  David E. Booth,et al.  Multi-Way Analysis: Applications in the Chemical Sciences , 2005, Technometrics.

[178]  Liqun Qi,et al.  Eigenvalues of a real supersymmetric tensor , 2005, J. Symb. Comput..

[179]  M. Friedlander,et al.  Computing non-negative tensor factorizations , 2008, Optim. Methods Softw..

[180]  Lars Kai Hansen,et al.  Decomposing the time-frequency representation of EEG using non-negative matrix and multi-way factorization , 2006 .

[181]  Jimeng Sun,et al.  Beyond streams and graphs: dynamic tensor analysis , 2006, KDD '06.

[182]  Philip S. Yu,et al.  Window-based Tensor Analysis on High-dimensional and Multi-aspect Streams , 2006, Sixth International Conference on Data Mining (ICDM'06).

[183]  Brett W. Bader,et al.  The TOPHITS Model for Higher-Order Web Link Analysis∗ , 2006 .

[184]  T. Kolda Multilinear operators for higher-order decompositions , 2006 .

[185]  Tamir Hazan,et al.  Multi-way Clustering Using Super-Symmetric Non-negative Tensor Factorization , 2006, ECCV.

[186]  Tamara G. Kolda,et al.  Categories and Subject Descriptors: G.4 [Mathematics of Computing]: Mathematical Software— , 2022 .

[187]  L. Lathauwer,et al.  Sufficient conditions for uniqueness in Candecomp/Parafac and Indscal with random component matrices , 2006, Psychometrika.

[188]  Tamara G. Kolda,et al.  MATLAB Tensor Toolbox , 2006 .

[189]  Lieven De Lathauwer,et al.  A Link between the Canonical Decomposition in Multilinear Algebra and Simultaneous Matrix Diagonalization , 2006, SIAM J. Matrix Anal. Appl..

[190]  A. Stegeman Degeneracy in Candecomp/Parafac explained for p × p × 2 arrays of rank p + 1 or higher , 2006 .

[191]  R. Bro Review on Multiway Analysis in Chemistry—2000–2005 , 2006 .

[192]  Bülent Yener,et al.  Collective Sampling and Analysis of High Order Tensors for Chatroom Communications , 2006, ISI.

[193]  Petros Drineas,et al.  Tensor-CUR decompositions for tensor-based data , 2006, KDD '06.

[194]  H. Kiers,et al.  Selecting among three-mode principal component models of different types and complexities: a numerical convex hull based method. , 2006, The British journal of mathematical and statistical psychology.

[195]  Rasmus Bro,et al.  A comparison of algorithms for fitting the PARAFAC model , 2006, Comput. Stat. Data Anal..

[196]  Wim P. Krijnen,et al.  Convergence of the sequence of parameters generated by alternating least squares algorithms , 2006, Comput. Stat. Data Anal..

[197]  Gérard Favier,et al.  The constrained block-PARAFAC decomposition , 2006 .

[198]  Lars Kai Hansen,et al.  Parallel Factor Analysis as an exploratory tool for wavelet transformed event-related EEG , 2006, NeuroImage.

[199]  A. Stegeman Degeneracy in Candecomp/Parafac and Indscal Explained For Several Three-Sliced Arrays With A Two-Valued Typical Rank , 2007, Psychometrika.

[200]  B. Khoromskij,et al.  Low rank Tucker-type tensor approximation to classical potentials , 2007 .

[201]  Patrick Dupont,et al.  Canonical decomposition of ictal scalp EEG reliably detects the seizure onset zone , 2007, NeuroImage.

[202]  Lieven De Lathauwer,et al.  Tensor-based techniques for the blind separation of DS-CDMA signals , 2007, Signal Process..

[203]  Tamara G. Kolda,et al.  Efficient MATLAB Computations with Sparse and Factored Tensors , 2007, SIAM J. Sci. Comput..

[204]  Lieven De Lathauwer,et al.  Fourth-Order Cumulant-Based Blind Identification of Underdetermined Mixtures , 2007, IEEE Transactions on Signal Processing.

[205]  A. Stegeman Comparing Independent Component Analysis and the Parafac model for artificial multi-subject fMRI data , 2007 .

[206]  A. Stegeman,et al.  On Kruskal's uniqueness condition for the Candecomp/Parafac decomposition , 2007 .

[207]  Tamara G. Kolda,et al.  Temporal Analysis of Semantic Graphs Using ASALSAN , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).

[208]  J. M. Landsberg,et al.  Geometry and the complexity of matrix multiplication , 2007, ArXiv.

[209]  Wim Van Paesschen,et al.  Canonical Decomposition of Ictal Scalp EEG and Accurate Source Localisation: Principles and Simulation Study , 2007, Comput. Intell. Neurosci..

[210]  Berkant Savas,et al.  Handwritten digit classification using higher order singular value decomposition , 2007, Pattern Recognit..

[211]  Mikkel N. Schmidt,et al.  Shift Invariant Sparse Coding of Image and Music Data , 2007 .

[212]  E. Acar,et al.  Seizure Recognition on Epilepsy Feature Tensor , 2007, 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[213]  Michael W. Mahoney,et al.  A randomized algorithm for a tensor-based generalization of the singular value decomposition , 2007 .

[214]  Rasmus Bro,et al.  Multiway analysis of epilepsy tensors , 2007, ISMB/ECCB.

[215]  Christian Bauckhage Robust Tensor Classifiers for Color Object Recognition , 2007, ICIAR.

[216]  Prabir Bhattacharya,et al.  MPEG Video Watermarking Using Tensor Singular Value Decomposition , 2007, ICIAR.

[217]  Andrzej Cichocki,et al.  Non-Negative Tensor Factorization using Alpha and Beta Divergences , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[218]  H. Matthies,et al.  Tensor product methods for stochastic problems , 2007 .

[219]  Tamara G. Kolda,et al.  Cross-language information retrieval using PARAFAC2 , 2007, KDD '07.

[220]  L. Qi,et al.  Numerical multilinear algebra and its applications , 2007 .

[221]  Lars Kai Hansen,et al.  ERPWAVELAB A toolbox for multi-channel analysis of time–frequency transformed event related potentials , 2007, Journal of Neuroscience Methods.

[222]  Boris N. Khoromskij,et al.  Mathematik in den Naturwissenschaften Leipzig Tensor-Product Approximation to Operators and Functions in High Dimensions , 2007 .

[223]  Carla D. Moravitz Martin,et al.  A Jacobi-Type Method for Computing Orthogonal Tensor Decompositions , 2008, SIAM J. Matrix Anal. Appl..

[224]  Lieven De Lathauwer,et al.  An enhanced line search scheme for complex-valued tensor decompositions. Application in DS-CDMA , 2008, Signal Process..

[225]  Jim Hefferon,et al.  Linear Algebra , 2012 .

[226]  Lieven De Lathauwer,et al.  Blind Deconvolution of DS-CDMA Signals by Means of Decomposition in Rank-$(1,L,L)$ Terms , 2008, IEEE Transactions on Signal Processing.

[227]  Vin de Silva,et al.  Tensor rank and the ill-posedness of the best low-rank approximation problem , 2006, math/0607647.

[228]  Gene H. Golub,et al.  Symmetric Tensors and Symmetric Tensor Rank , 2008, SIAM J. Matrix Anal. Appl..

[229]  Lieven De Lathauwer,et al.  A Method to Avoid Diverging Components in the Candecomp/Parafac Model for Generic I˟J˟2 Arrays , 2008, SIAM J. Matrix Anal. Appl..

[230]  Lieven De Lathauwer,et al.  Decompositions of a Higher-Order Tensor in Block Terms - Part III: Alternating Least Squares Algorithms , 2008, SIAM J. Matrix Anal. Appl..

[231]  P. Kroonenberg Applied Multiway Data Analysis , 2008 .

[232]  Lieven De Lathauwer,et al.  Swamp reducing technique for tensor decomposition , 2008, 2008 16th European Signal Processing Conference.

[233]  Michael W. Berry,et al.  Discussion Tracking in Enron Email using PARAFAC. , 2008 .

[234]  Lieven De Lathauwer,et al.  Decompositions of a Higher-Order Tensor in Block Terms - Part II: Definitions and Uniqueness , 2008, SIAM J. Matrix Anal. Appl..

[235]  Lieven De Lathauwer,et al.  Blind Identification of Underdetermined Mixtures by Simultaneous Matrix Diagonalization , 2008, IEEE Transactions on Signal Processing.

[236]  Michael P. Friedlander,et al.  Computing non-negative tensor factorizations , 2008, Optim. Methods Softw..

[237]  Lieven De Lathauwer,et al.  Decompositions of a Higher-Order Tensor in Block Terms - Part I: Lemmas for Partitioned Matrices , 2008, SIAM J. Matrix Anal. Appl..

[238]  Bülent Yener,et al.  Unsupervised Multiway Data Analysis: A Literature Survey , 2009, IEEE Transactions on Knowledge and Data Engineering.

[239]  R. Harshman,et al.  Modeling multi‐way data with linearly dependent loadings , 2009 .

[240]  P. Comon,et al.  Generic and typical ranks of multi-way arrays , 2009 .

[241]  Rasmus Broa,et al.  Modeling multiway data with linearly dependent loadings y , 2009 .

[242]  Berkant Savas,et al.  A Newton-Grassmann Method for Computing the Best Multilinear Rank-(r1, r2, r3) Approximation of a Tensor , 2009, SIAM J. Matrix Anal. Appl..

[243]  L. Lathauwer,et al.  An enhanced plane search scheme for complex-valued tensor decompositions , 2010 .

[244]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[245]  By A. Doostan,et al.  A least-squares approximation of high-dimensional uncertain systems , 2022 .