Robust and adaptive communication under uncertain interference

Robust and adaptive communication under uncertain interference by Anand Dilip Sarwate Doctor of Philosophy in Engineering—Electrical Engineering and Computer Sciences and the Designated Emphasis in Communication, Computation, and Statistics University of California, Berkeley Professor Michael Gastpar, Chair In the future, wireless communication systems will play an increasingly integral role in society. Cutting-edge application areas such as cognitive radio, ad-hoc networks, and sensor networks are changing the way we think about wireless services. The demand for ubiquitous communication and computing requires flexible communication protocols that can operate in a range of conditions. This thesis adopts and extends a mathematical model for these communication systems that accounts for uncertainty and time variation in link qualities. The arbitrarily varying channel (AVC) is an information theoretic channel model that has a time varying state with no statistical description. We assume the state is chosen by an adversarial jammer, reflecting the demand that our constructions work for all state sequences. In this thesis we show how resources such as secret keys, feedback, and side-information can help communication under this kind of uncertainty. In order to put our results in context we provide a detailed taxonomy of the known results on AVCs in a unified setting. We then prove new results on list decoding

[1]  Peter Elias,et al.  List decoding for noisy channels , 1957 .

[2]  Richard J. La,et al.  DIMACS Series in Discrete Mathematics and Theoretical Computer Science A Game-theoretic Look at the Gaussian Multiaccess Channel , 2022 .

[3]  Katalin Marton,et al.  A coding theorem for the discrete memoryless broadcast channel , 1979, IEEE Trans. Inf. Theory.

[4]  Imre Csiszár,et al.  Capacity and decoding rules for classes of arbitrarily varying channels , 1989, IEEE Trans. Inf. Theory.

[5]  Imre Csiszár,et al.  Arbitrarily varying channels with constrained inputs and states , 1988, IEEE Trans. Inf. Theory.

[6]  Imre Csiszár,et al.  Arbitrarily varying channels with general alphabets and states , 1992, IEEE Trans. Inf. Theory.

[7]  Anand D. Sarwate,et al.  Coding against delayed adversaries , 2010, 2010 IEEE International Symposium on Information Theory.

[8]  Anand D. Sarwate,et al.  Observation Uncertainty in Gaussian Sensor Networks , 2006 .

[9]  Michael L. Honig,et al.  Auction-Based Spectrum Sharing , 2006, Mob. Networks Appl..

[10]  Venkatesan Guruswami,et al.  Concatenated codes can achieve list-decoding capacity , 2008, SODA '08.

[11]  D. Blackwell,et al.  The Capacities of Certain Channel Classes Under Random Coding , 1960 .

[12]  A. Lapidoth On the role of mismatch in rate distortion theory , 1997, IEEE Trans. Inf. Theory.

[13]  Rudolf Ahlswede,et al.  Correlated sources help transmission over an arbitrarily varying channel , 1997, IEEE Trans. Inf. Theory.

[14]  Anant Sahai,et al.  SNR Walls for Signal Detection , 2008, IEEE Journal of Selected Topics in Signal Processing.

[15]  Meir Feder,et al.  Achieving the Empirical Capacity Using Feedback: Memoryless Additive Models , 2009, IEEE Transactions on Information Theory.

[16]  Sennur Ulukus,et al.  Mutual Information Games in Multi-user Channels with Correlated Jamming , 2006, ArXiv.

[17]  Wayne E. Stark,et al.  On the capacity of channels with unknown interference , 1989, IEEE Trans. Inf. Theory.

[18]  Alexandros G. Dimakis,et al.  Reaching consensus in wireless networks with probabilistic broadcast , 2009, 2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[19]  Andrea J. Goldsmith,et al.  Finite State Channels With Time-Invariant Deterministic Feedback , 2006, IEEE Transactions on Information Theory.

[20]  Imre Csiszár,et al.  Capacity of the Gaussian arbitrarily varying channel , 1991, IEEE Trans. Inf. Theory.

[21]  Ranjan K. Mallik,et al.  Analysis of an on-off jamming situation as a dynamic game , 2000, IEEE Trans. Commun..

[22]  R. McEliece,et al.  Some Information Theoretic Saddlepoints , 1985 .

[23]  Irvin G. Stiglitz,et al.  Coding for a class of unknown channels , 1966, IEEE Trans. Inf. Theory.

[24]  Anand D. Sarwate,et al.  Channels with nosy "noise" , 2007, 2007 IEEE International Symposium on Information Theory.

[25]  Anant Sahai Balancing forward and feedback error correction for erasure channels with unreliable feedback , 2007, ArXiv.

[26]  Nadav Shulman,et al.  Communication over an unknown channel via common broadcasting , 2003 .

[27]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[28]  Amos Lapidoth,et al.  The Gaussian watermarking game , 2000, IEEE Trans. Inf. Theory.

[29]  Max H. M. Costa,et al.  Writing on dirty paper , 1983, IEEE Trans. Inf. Theory.

[30]  Anand D. Sarwate,et al.  Binary additive channels with individual noise sequences and limited active feedback , 2007 .

[31]  Anand D. Sarwate,et al.  Broadcast Gossip Algorithms for Consensus , 2009, IEEE Transactions on Signal Processing.

[32]  Brian L. Hughes,et al.  Nonconvexity of the capacity region of the multiple-access arbitrarily varying channel subject to constraints , 1995, IEEE Trans. Inf. Theory.

[33]  Naomi Ehrich Leonard,et al.  Collective Motion, Sensor Networks, and Ocean Sampling , 2007, Proceedings of the IEEE.

[34]  Rudolf Ahlswede,et al.  Arbitrarily Varying Multiple-Access Channels Part I - Ericson's Symmetrizability Is Adequate, Gubner's Conjecture Is True , 1997, IEEE Trans. Inf. Theory.

[35]  Anand D. Sarwate,et al.  Deterministic list codes for state-constrained arbitrarily varying channels , 2007, ArXiv.

[36]  László Lovász,et al.  On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.

[37]  Joseph Mitola,et al.  Cognitive radio: making software radios more personal , 1999, IEEE Wirel. Commun..

[38]  Rudolf Ahlswede,et al.  Channels with arbitrarily varying channel probability functions in the presence of noiseless feedback , 1973 .

[39]  Alexander Vardy,et al.  Algebraic soft-decision decoding of Reed-Solomon codes , 2003, IEEE Trans. Inf. Theory.

[40]  Rudolf Ahlswede,et al.  Two proofs of Pinsker's conjecture concerning arbitrarily varying channels , 1991, IEEE Trans. Inf. Theory.

[41]  Emina Soljanin,et al.  DIMACS Series in Discrete Mathematics and Theoretical Computer Science Hybrid ARQ with Random Transmission Assignments , 2022 .

[42]  Rudolf Ahlswede,et al.  Reusable memories in the light of the old arbitrarily varying-and a new outputwise varying channel theory , 1991, IEEE Trans. Inf. Theory.

[43]  Anant Sahai Why Do Block Length and Delay Behave Differently if Feedback Is Present? , 2008, IEEE Transactions on Information Theory.

[44]  C. R. Baker,et al.  Information Capacity of Channels with Partially Unknown Noise. I. Finite-Dimensional Channels , 1996, SIAM J. Appl. Math..

[45]  Anant Sahai,et al.  Coding into a source: a direct inverse Rate-Distortion theorem , 2006, ArXiv.

[46]  Rudolf Ahlswede,et al.  Correlated Decoding for Channels with Arbitrarily Varying Channel Probability Functions , 1969, Inf. Control..

[47]  Massimo Franceschetti,et al.  SPECIAL ISSUE ON MODELS, THEORY, AND CODES FOR RELAYING AND COOPERATION IN COMMUNICATION NETWORKS , 2007 .

[48]  Anand D. Sarwate,et al.  Redundancy of exchangeable estimators , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[49]  Wayne E. Stark,et al.  An information theoretic study of communication in the presence of jamming , 1981 .

[50]  R. Gallager Information Theory and Reliable Communication , 1968 .

[51]  Shlomo Shamai,et al.  The Capacity Region of the Gaussian Multiple-Input Multiple-Output Broadcast Channel , 2006, IEEE Transactions on Information Theory.

[52]  Prakash Narayan,et al.  The capacity of a vector Gaussian arbitrarily varying channel , 1988, IEEE Trans. Inf. Theory.

[53]  R. Ahlswede A Note on the Existence of the Weak Capacity for Channels with Arbitrarily Varying Channel Probability Functions and Its Relation to Shannon's Zero Error Capacity , 1970 .

[54]  Amir Dembo,et al.  Large Deviations Techniques and Applications , 1998 .

[55]  John A. Gubner On the deterministic-code capacity of the multiple-access arbitrarily varying channel , 1990, IEEE Trans. Inf. Theory.

[56]  Thomas M. Cover,et al.  Broadcast channels , 1972, IEEE Trans. Inf. Theory.

[57]  Gerhard Kramer,et al.  Cooperative Communications , 2007, Found. Trends Netw..

[58]  Hamid Gharavi,et al.  Multichannel Mobile Ad Hoc Links for Multimedia Communications , 2008, Proceedings of the IEEE.

[59]  Prakash Narayan,et al.  Gaussian arbitrarily varying channels , 1987, IEEE Trans. Inf. Theory.

[60]  Emre Telatar,et al.  Variable length coding over an unknown channel , 2006, IEEE Transactions on Information Theory.

[61]  R. Srikant,et al.  Correlated Jamming on MIMO Gaussian Fading Channels , 2004, IEEE Trans. Inf. Theory.

[62]  Rudolf Ahlswede,et al.  Localized random and arbitrary errors in the light of arbitrarily varying channel theory , 1995, IEEE Trans. Inf. Theory.

[63]  N. S. Kambo,et al.  The capacities of certain special channels with arbitrarily varying channel probability functions , 1974 .

[64]  C. Shannon Probability of error for optimal codes in a Gaussian channel , 1959 .

[65]  Claude E. Shannon,et al.  Channels with Side Information at the Transmitter , 1958, IBM J. Res. Dev..

[66]  Adam D. Smith Scrambling adversarial errors using few random bits, optimal information reconciliation, and better private codes , 2007, SODA '07.

[67]  Gaurav S. Sukhatme,et al.  Connecting the Physical World with Pervasive Networks , 2002, IEEE Pervasive Comput..

[68]  Robert G. Gallager,et al.  Capacity and coding for degraded broadcast channels , 1974 .

[69]  Tamer Basar,et al.  Minimax causal transmission of Gaussian stochastic processes over channels subject to correlated jamming , 1989 .

[70]  Rudolf Ahlswede,et al.  Coloring hypergraphs: A new approach to multi-user source coding, 1 , 1979 .

[71]  Anand D. Sarwate,et al.  Limited feedback achieves the empirical capacity , 2007, ArXiv.

[72]  Jacob Wolfowitz,et al.  Channels with Arbitrarily Varying Channel Probability Functions , 1962, Inf. Control..

[73]  Frank Kelly,et al.  Charging and rate control for elastic traffic , 1997, Eur. Trans. Telecommun..

[74]  R. Ahlswede Elimination of correlation in random codes for arbitrarily varying channels , 1978 .

[75]  Michael Langberg,et al.  Private codes or succinct random codes that are (almost) perfect , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[76]  Prakash Narayan,et al.  Reliable Communication Under Channel Uncertainty , 1998, IEEE Trans. Inf. Theory.

[77]  S. Shankar Sastry,et al.  Tracking and Coordination of Multiple Agents Using Sensor Networks: System Design, Algorithms and Experiments , 2007, Proceedings of the IEEE.

[78]  Anand D. Sarwate,et al.  Randomization for robust communication in networks, or Brother, can you spare a bit? , 2006 .

[79]  Anand D. Sarwate,et al.  Single-Ballot Risk-Limiting Audits Using Convex Optimization , 2010, EVT/WOTE.

[80]  Victor K.-W. Wei,et al.  Generalized Hamming weights for linear codes , 1991, IEEE Trans. Inf. Theory.

[81]  John A. Gubner On the capacity region of the discrete additive multiple-access arbitrarily varying channel , 1992, IEEE Trans. Inf. Theory.

[82]  Anand D. Sarwate,et al.  Exact emulation of a priority queue with a switch and delay lines , 2006, Queueing Syst. Theory Appl..

[83]  Brendan J. Frey,et al.  Rateless Coding for Arbitrary Channel Mixtures With Decoder Channel State Information , 2009, IEEE Transactions on Information Theory.

[84]  Parameswaran Ramanathan,et al.  Distributed target classification and tracking in sensor networks , 2003 .

[85]  Anand D. Sarwate,et al.  Rateless coding with partial state information at the decoder , 2007, ArXiv.

[86]  Venkatesan Guruswami,et al.  Explicit capacity-achieving list-decodable codes , 2005, STOC.

[87]  A. Wyner Random packings and coverings of the unit n-sphere , 1967 .

[88]  Alon Orlitsky,et al.  Zero-Error Information Theory , 1998, IEEE Trans. Inf. Theory.

[89]  G. Longo,et al.  Secure Digital Communications , 1983, International Centre for Mechanical Sciences.

[90]  Patrick Mitran,et al.  Achievable rates in cognitive radio channels , 2006, IEEE Transactions on Information Theory.

[91]  Michael Luby,et al.  LT codes , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[92]  G. David Forney,et al.  Exponential error bounds for erasure, list, and decision feedback schemes , 1968, IEEE Trans. Inf. Theory.

[93]  Anand D. Sarwate,et al.  Rateless Codes for AVC Models , 2007, IEEE Transactions on Information Theory.

[94]  Madhu Sudan,et al.  Decoding of Reed Solomon Codes beyond the Error-Correction Bound , 1997, J. Complex..

[95]  D. Blackwell,et al.  The Capacity of a Class of Channels , 1959 .

[96]  Volodia Blinovsky,et al.  Estimation of the size of the list when decoding over an arbitrarily varying channel , 1993, Algebraic Coding.

[97]  Anand D. Sarwate,et al.  Adversarial interference models for multiantenna cooperative systems , 2008, 2008 42nd Annual Conference on Information Sciences and Systems.

[98]  Narayan B. Mandayam,et al.  Coalitions in Cooperative Wireless Networks , 2008, IEEE Journal on Selected Areas in Communications.

[99]  Imre Csisz Arbitrarily Varying Channels with General Alphabets and States , 1992 .

[100]  Venkatesan Guruswami,et al.  List decoding from erasures: bounds and code constructions , 2001, IEEE Trans. Inf. Theory.

[101]  Imre Csiszár,et al.  The capacity of the arbitrarily varying channel revisited: Positivity, constraints , 1988, IEEE Trans. Inf. Theory.

[102]  Michael Gastpar,et al.  On Capacity Under Receive and Spatial Spectrum-Sharing Constraints , 2007, IEEE Transactions on Information Theory.

[103]  Rudolf Ahlswede,et al.  Common randomness in information theory and cryptography - I: Secret sharing , 1993, IEEE Trans. Inf. Theory.

[104]  Elizabeth M. Belding-Royer,et al.  A review of current routing protocols for ad hoc mobile wireless networks , 1999, IEEE Wirel. Commun..

[105]  RUDOLF AHLSWEDE Arbitrarily varying channels with states sequence known to the sender , 1986, IEEE Trans. Inf. Theory.

[106]  Brian L. Hughes,et al.  Interleaving and the arbitrarily varying channel , 1991, IEEE Trans. Inf. Theory.

[107]  Massimo Franceschetti,et al.  Introduction to the Special Issue on Models, Theory, and Codes for Relaying and Cooperation in Communication Networks [Guest Editorial] , 2007, IEEE Trans. Inf. Theory.

[108]  Anand D. Sarwate,et al.  Arbitrarily dirty paper coding and applications , 2008, 2008 IEEE International Symposium on Information Theory.

[109]  David Tse,et al.  Fundamentals of Wireless Communication , 2005 .

[110]  P. Erdös,et al.  Families of finite sets in which no set is covered by the union ofr others , 1985 .

[111]  Amos Lapidoth,et al.  Nearest neighbor decoding for additive non-Gaussian noise channels , 1996, IEEE Trans. Inf. Theory.

[112]  Alexandros G. Dimakis,et al.  Geographic Gossip: Efficient Averaging for Sensor Networks , 2007, IEEE Transactions on Signal Processing.

[113]  Venkatesan Guruswami,et al.  Combinatorial bounds for list decoding , 2002, IEEE Trans. Inf. Theory.

[114]  Michael A. Tsfasman,et al.  Geometric approach to higher weights , 1995, IEEE Trans. Inf. Theory.

[115]  Pramod Viswanath,et al.  Cognitive Radio: An Information-Theoretic Perspective , 2009, IEEE Transactions on Information Theory.

[116]  Toby Berger,et al.  The capacity of finite-State Markov Channels With feedback , 2005, IEEE Transactions on Information Theory.

[117]  Johann-Heinrich Jahn,et al.  Coding of arbitrarily varying multiuser channels , 1981, IEEE Trans. Inf. Theory.

[118]  Brian L. Hughes,et al.  Exponential error bounds for random codes on Gaussian arbitrarily varying channels , 1991, IEEE Trans. Inf. Theory.

[119]  Rudolf Ahlswede,et al.  Common Randomness in Information Theory and Cryptography - Part II: CR Capacity , 1998, IEEE Trans. Inf. Theory.

[120]  Chee-Yee Chong,et al.  Sensor networks: evolution, opportunities, and challenges , 2003, Proc. IEEE.

[121]  E. Hof,et al.  On the Deterministic-Code Capacity of the Two-User Discrete Memoryless Arbitrarily Varying General Broadcast Channel with Degraded Message Sets , 2006, 2006 IEEE 24th Convention of Electrical & Electronics Engineers in Israel.

[122]  Ying Wang,et al.  Capacity and Random-Coding Exponents for Channel Coding With Side Information , 2007, IEEE Transactions on Information Theory.

[123]  D. Blackwell,et al.  Proof of Shannon's Transmission Theorem for Finite-State Indecomposable Channels , 1958 .

[124]  Anand D. Sarwate,et al.  Randomization bounds on Gaussian arbitrarily varying channels , 2006, 2006 IEEE International Symposium on Information Theory.

[125]  Shraga I. Bross,et al.  On the Deterministic-Code Capacity of the Two-User Discrete Memoryless Arbitrarily Varying General Broadcast Channel With Degraded Message Sets , 2006, IEEE Transactions on Information Theory.

[126]  Rudolf Ahlswede,et al.  A method of coding and its application to arbitrarily varying channels , 1980 .

[127]  Joseph Mitola,et al.  Cognitive Radio An Integrated Agent Architecture for Software Defined Radio , 2000 .

[128]  Frank Kelly,et al.  Rate control for communication networks: shadow prices, proportional fairness and stability , 1998, J. Oper. Res. Soc..

[129]  Brian L. Hughes,et al.  On error exponents for arbitrarily varying channels , 1996, IEEE Trans. Inf. Theory.

[130]  Shlomo Shamai,et al.  Capacity and lattice strategies for canceling known interference , 2005, IEEE Transactions on Information Theory.

[131]  Anand D. Sarwate,et al.  Coding against myopic adversaries , 2010, 2010 IEEE Information Theory Workshop.

[132]  Vladimir M. Blinovsky,et al.  List decoding , 1992, Discret. Math..

[133]  Rudolf Ahlswede The maximal error capacity of arbitrarily varying channels for constant list sizes , 1993, IEEE Trans. Inf. Theory.

[134]  Patrick P. Bergmans,et al.  Random coding theorem for broadcast channels with degraded components , 1973, IEEE Trans. Inf. Theory.

[135]  S. Nishimura The strong converse theorem in the decoding scheme of list size L , 1969 .

[136]  Alexander Vardy,et al.  Correcting errors beyond the Guruswami-Sudan radius in polynomial time , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[137]  Brendan J. Frey,et al.  Efficient variable length channel coding for unknown DMCs , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[138]  Patrick P. Bergmans,et al.  A simple converse for broadcast channels with additive white Gaussian noise (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[139]  Anand Sarwate,et al.  Longest Increasing Subsequences and Random Matrices , 2022 .

[140]  Sekhar Tatikonda,et al.  Feedback capacity of finite-state machine channels , 2005, IEEE Transactions on Information Theory.

[141]  Rudolf Ahlswede,et al.  Channel capacities for list codes , 1973, Journal of Applied Probability.

[142]  Brian L. Hughes The smallest list for the arbitrarily varying channel , 1997, IEEE Trans. Inf. Theory.

[143]  Shlomo Shamai,et al.  Capacity and decoding rules for the Poisson arbitrarily varying chann , 2001, IEEE Trans. Inf. Theory.

[144]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[145]  Thomas M. Cover,et al.  Cooperative broadcasting , 1974, IEEE Trans. Inf. Theory.

[146]  Anand D. Sarwate,et al.  Zero-Rate Feedback Can Achieve the Empirical Capacity , 2007, IEEE Transactions on Information Theory.

[147]  Venkatesan Guruswami,et al.  Improved decoding of Reed-Solomon and algebraic-geometry codes , 1999, IEEE Trans. Inf. Theory.

[148]  J. Wolfowitz,et al.  The capacity of a channel with arbitrarily varying channel probability functions and binary output alphabet , 1970 .

[149]  Claude E. Shannon,et al.  The zero error capacity of a noisy channel , 1956, IRE Trans. Inf. Theory.

[150]  Anand D. Sarwate,et al.  Linear strategies for the Gaussian MAC with user cooperation , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[151]  I. Csiszár,et al.  On the capacity of the arbitrarily varying channel for maximum probability of error , 1981 .

[152]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[153]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[154]  Shlomo Shamai,et al.  Worst-case power-constrained noise for binary-input channels , 1992, IEEE Trans. Inf. Theory.

[155]  John A. Gubner State constraints for the multiple-access arbitrarily varying channel , 1991, IEEE Trans. Inf. Theory.

[156]  Thomas H. E. Ericson,et al.  Exponential error bounds for random codes in the arbitrarily varying channel , 1985, IEEE Trans. Inf. Theory.

[157]  M. Gastpar,et al.  Rateless coding with partial CSI at the decoder , 2007, 2007 IEEE Information Theory Workshop.