Cognitive systems

representations. We explore some specific architectural instantiations in Chapter 10. In the next subsection we describe in more the way that CAS is implemented in CAST. This includes discussion of the memory model, and the communication model. Following that we define four problems that are raised by CAS, and indeed by any architecture schema which satisfies our assumptions from Section 2.3. After describing these we describe sub-schemas for CAS that address each of the four problems. 2.4.4 CAST: A toolkit implementing CAS In Section 2.4 we described how CAS works at an abstract, conceptual level. However, the details of the implementation of our schema in CAST determine a great deal about its efficiency, and how easy (or hard) it is for it to be specialised in one way or another — i.e. the kinds of moves the implementation supports through the space of architectures. In particular the communication, filtering and memory access models employed by CAST are key in how efficient particular architectural instantiations of the schema tend to be. In our schema, a working memory is an associative container that maps between unique identifiers and working memory entries. Each entry is an instance of a type, which can be considered as analogous to a class description. A working memory entry can be any information that can be encapsulated into a single object class. A system that includes visual components may, for example, include entries that describe regions of interest and visually determined objects. A system that must navigate through a building may have entries representing maps of various floors, and objects that have been detected. Components can add new entries to working memory, and overwrite or delete existing entries. Components can retrieve entries from working memory using three access modes: id access, type access and change access. For id access the component provides a unique id and then retrieves the entry associated with that id. For type access the component specifies a type and retrieves all the entries on working memory that are instances of this type. Whilst these two access modes provide the basic mechanisms for accessing the contents of working memory, they are relatively limited in their use for most processing tasks. Typically most component-level processing can be characterised by a model in which a component waits until a particular change has occurred to an entry on working memory, before processing the changed entry (or a related entry). To support this processing model, components can subscribe to change events. Change events are generated by the working memory to describe the operations being performed on the entries it contains. Different instantiations of the schema may support different content for change events, but a minimum set of useful information is the unique id and type of the changed entry, the name of component the made the change, and the operation performed to create the change (i.e. whether the entry was added, overwritten or deleted).

[1]  Matthew W. Crocker,et al.  The Coordinated Interplay of Scene, Utterance, and World Knowledge: Evidence From Eye Tracking , 2006, Cogn. Sci..

[2]  Michael A. West,et al.  Combined Parameter and State Estimation in Simulation-Based Filtering , 2001, Sequential Monte Carlo Methods in Practice.

[3]  Harry G. Barrow,et al.  A Versatile Computer-Controlled Assembly System , 1973, IJCAI.

[4]  José A. Castellanos,et al.  Mobile Robot Localization and Map Building: A Multisensor Fusion Approach , 2000 .

[5]  Bernt Schiele,et al.  Local features for object class recognition , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[6]  Ian D. Reid,et al.  Articulated Body Motion Capture by Stochastic Search , 2005, International Journal of Computer Vision.

[7]  Fahiem Bacchus,et al.  Planning with Resources and Concurrency: A Forward Chaining Approach , 2001, IJCAI.

[8]  P. Bloom How children learn the meanings of words , 2000 .

[9]  M. Shanahan,et al.  Applying global workspace theory to the frame problem , 2005, Cognition.

[10]  E. Rosch,et al.  Cognition and Categorization , 1980 .

[11]  Edmund H. Durfee,et al.  Top-down search for coordinating the hierarchical plans of multiple agents , 1999, AGENTS '99.

[12]  Sanja Fidler,et al.  Towards Scalable Representations of Object Categories: Learning a Hierarchy of Parts , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[13]  Paolo Pirjanian,et al.  A Visual Front-end for Simultaneous Localization and Mapping , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[14]  David Haussler,et al.  Exploiting Generative Models in Discriminative Classifiers , 1998, NIPS.

[15]  Andrew Zisserman,et al.  An Exemplar Model for Learning Object Classes , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[16]  Aaron Sloman The well-designed young mathematician , 2008, Artif. Intell..

[17]  Deb K. Roy,et al.  Learning visually grounded words and syntax for a scene description task , 2002, Comput. Speech Lang..

[18]  Iain Murray Introduction To Gaussian Processes , 2008 .

[19]  Roger K. Moore Spoken language processing: Piecing together the puzzle , 2007, Speech Commun..

[20]  John K. Tsotsos Analyzing vision at the complexity level , 1990, Behavioral and Brain Sciences.

[21]  Patrick Blackburn,et al.  Representation, Reasoning, and Relational Structures: a Hybrid Logic Manifesto , 2000, Log. J. IGPL.

[22]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[23]  E. Gat On Three-Layer Architectures , 1997 .

[24]  Deb Roy,et al.  Connecting language to the world , 2005, Artif. Intell..

[25]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[26]  Ronen I. Brafman,et al.  Partial-Order Planning with Concurrent Interacting Actions , 2011, J. Artif. Intell. Res..

[27]  Y. Yamane,et al.  Complex objects are represented in macaque inferotemporal cortex by the combination of feature columns , 2001, Nature Neuroscience.

[28]  Michael J. Spivey,et al.  Syntactic ambiguity resolution in discourse: modeling the effects of referential context and lexical frequency. , 1998, Journal of experimental psychology. Learning, memory, and cognition.

[29]  Simone Frintrop,et al.  Attentional Landmarks and Active Gaze Control for Visual SLAM , 2008, IEEE Transactions on Robotics.

[30]  Michel Verleysen,et al.  Nonlinear dimensionality reduction of data manifolds with essential loops , 2005, Neurocomputing.

[31]  Dimitrios Gunopulos,et al.  Incremental support vector machine construction , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[32]  Nanda Kambhatla,et al.  Dimension Reduction by Local Principal Component Analysis , 1997, Neural Computation.

[33]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[34]  Oren Etzioni,et al.  An Approach to Planning with Incomplete Information , 1992, KR.

[35]  Roberto Cipolla,et al.  Incremental Learning of Temporally-Coherent Gaussian Mixture Models , 2005, BMVC.

[36]  Henrik I. Christensen,et al.  Attentional Landmark Selection for Visual SLAM , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[37]  Alexei A. Efros,et al.  Discovering objects and their location in images , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[38]  Joachim M. Buhmann,et al.  Learning the Compositional Nature of Visual Objects , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[39]  Alex Pentland,et al.  Coupled hidden Markov models for complex action recognition , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[40]  Johannes Schumacher,et al.  An Introduction to Hybrid Dynamical Systems, Springer Lecture Notes in Control and Information Sciences 251 , 1999 .

[41]  Wolfram Burgard,et al.  Experiences with an Interactive Museum Tour-Guide Robot , 1999, Artif. Intell..

[42]  P. Thomas Fletcher,et al.  Statistics of shape via principal geodesic analysis on Lie groups , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[43]  Russell Greiner,et al.  Improving an Adaptive Image Interpretation System by Leveraging , 2008 .

[44]  Candace L. Sidner,et al.  COLLAGEN: A Collaboration Manager for Software Interface Agents , 1998, User Modeling and User-Adapted Interaction.

[45]  Sanjoy Dasgupta,et al.  A Generalization of Principal Components Analysis to the Exponential Family , 2001, NIPS.

[46]  Carlos Areces,et al.  Logic Engineering. The Case of Description and Hybrid Logics , 2000 .

[47]  Nahum Shimkin,et al.  Nonlinear Control Systems , 2008 .

[48]  Cipriano Galindo,et al.  Multi-hierarchical semantic maps for mobile robotics , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[49]  Anthony G. Cohn,et al.  Qualitative Spatial Representation and Reasoning: An Overview , 2001, Fundam. Informaticae.

[50]  G. Ryle,et al.  The concept of mind. , 2004, The International journal of psycho-analysis.

[51]  Albert C. Stevens,et al.  Distortions in judged spatial relations , 1978, Cognitive Psychology.

[52]  Pietro Perona,et al.  Recognition of planar object classes , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[53]  Michael L. Littman,et al.  The Computational Complexity of Probabilistic Planning , 1998, J. Artif. Intell. Res..

[54]  R. Brafman,et al.  Contingent Planning via Heuristic Forward Search witn Implicit Belief States , 2005, ICAPS.

[55]  Keith Golden,et al.  Representing Sensing Actions: The Middle Ground Revisited , 1996, KR.

[56]  Bernt Schiele,et al.  A comparison of position estimation techniques using occupancy grids , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[57]  Yiannis Aloimonos,et al.  Active vision , 2004, International Journal of Computer Vision.

[58]  Stephan Oepen,et al.  Ambiguity Packing in Constraint-based Parsing Practical Results , 2000, ANLP.

[59]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[60]  David J. Fleet,et al.  Gaussian Process Dynamical Models , 2005, NIPS.

[61]  Qiang Yang,et al.  Intelligent planning - a decomposition and abstraction based approach , 1997, Artificial intelligence.

[62]  Danijel Skocaj,et al.  Online kernel density estimation for interactive learning , 2010, Image Vis. Comput..

[63]  Mante S. Nieuwland,et al.  When Peanuts Fall in Love: N400 Evidence for the Power of Discourse , 2005, Journal of Cognitive Neuroscience.

[64]  Claude-Pierre Jeannerod,et al.  On the complexity of polynomial matrix computations , 2003, ISSAC '03.

[65]  Takayuki Ito,et al.  Neocognitron: A neural network model for a mechanism of visual pattern recognition , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[66]  Pierre Lison,et al.  Salience-driven Contextual Priming of Speech Recognition for Human-Robot Interaction , 2008, ECAI.

[67]  John Langford,et al.  Risk Sensitive Particle Filters , 2001, NIPS.

[68]  Dieter Fox,et al.  Real-time particle filters , 2004, Proceedings of the IEEE.

[69]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[70]  N. Block On a confusion about a function of consciousness , 1995, Behavioral and Brain Sciences.

[71]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[72]  Javier Minguez,et al.  Nearness diagram (ND) navigation: collision avoidance in troublesome scenarios , 2004, IEEE Transactions on Robotics and Automation.

[73]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[74]  Benjamin Kuipers,et al.  The Spatial Semantic Hierarchy , 2000, Artif. Intell..

[75]  Francesco Orabona,et al.  Indoor Place Recognition using Online Independent Support Vector Machines , 2007, BMVC.

[76]  Michael Brenner,et al.  Modelling Spatio-Temporal Comprehension in Situated Human-Robot Dialogue as Reasoning about Intentions and Plans , 2007, AAAI Spring Symposium: Intentions in Intelligent Systems.

[77]  David Traum,et al.  The Information State Approach to Dialogue Management , 2003 .

[78]  Benjamin Kuipers,et al.  Bootstrap learning for place recognition , 2002, AAAI/IAAI.

[79]  Antonio Torralba,et al.  Learning hierarchical models of scenes, objects, and parts , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[80]  Roland Siegwart,et al.  Incremental robot mapping with fingerprints of places , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[81]  Marie desJardins,et al.  Coordinating a Distributed Planning System , 1999, AI Mag..

[82]  Ferdinand van der Heijden,et al.  Recursive unsupervised learning of finite mixture models , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[83]  Ashutosh Saxena,et al.  Robotic Grasping of Novel Objects using Vision , 2008, Int. J. Robotics Res..

[84]  G. Altmann Ambiguity in sentence processing , 1998, Trends in Cognitive Sciences.

[85]  Olaf Sporns,et al.  Mapping Information Flow in Sensorimotor Networks , 2006, PLoS Comput. Biol..

[86]  Henrik I. Christensen,et al.  Topological Modelling for Human Augmented Mapping , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[87]  Colin M. Brown,et al.  Early referential context effects in sentence processing: Evidence from event-related brain potentials , 1999 .

[88]  Reza Shadmehr,et al.  Learning of action through adaptive combination of motor primitives , 2000, Nature.

[89]  Sarit Kraus,et al.  Collaborative Plans for Complex Group Action , 1996, Artif. Intell..

[90]  Laurent Itti,et al.  Biologically-inspired robotics vision monte-carlo localization in the outdoor environment , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[91]  P. Michor,et al.  Natural operations in differential geometry , 1993 .

[92]  Neil D. Lawrence,et al.  Hierarchical Gaussian process latent variable models , 2007, ICML '07.

[93]  Dietmar Dietrich,et al.  Simulating the Mind: A Technical Neuropsychoanalytical Approach , 2008 .

[94]  Jochen Triesch,et al.  Object Recognition with Multiple Feature Types , 1998 .

[95]  Justus H. Piater,et al.  Online Learning of Gaussian Mixture Models - a Two-Level Approach , 2008, VISAPP.

[96]  Wolfram Burgard,et al.  An Integrated Robotic System for Spatial Understanding and Situated Interaction in Indoor Environments , 2007, AAAI.

[97]  Hans-Otto Carmesin,et al.  A Taxonomy of Spatial Knowledge for Navigation and its Application to the Bremen Autonomous Wheelchair , 1998, Spatial Cognition.

[98]  Matthew W. Crocker,et al.  Gaze alignment of interlocutors in conversational dialogues , 2006, ETRA.

[99]  Oren Etzioni,et al.  Sound and Efficient Closed-World Reasoning for Planning , 1997, Artif. Intell..

[100]  Chandana Paul,et al.  Hybrid laser and vision based object search and localization , 2008, 2008 IEEE International Conference on Robotics and Automation.

[101]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[102]  Aaron Sloman Introduction to Symposium GC5: Architecture of Brain and Mind Integrating high level cognitive processes with brain mechanisms and functions in a working robot , 2006 .

[103]  John R Anderson,et al.  An integrated theory of the mind. , 2004, Psychological review.

[104]  Barbara Caputo,et al.  Visual Servoing to Help Camera Operators Track Better , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[105]  Aleš Leonardis,et al.  A Framework for Continuous Learning of Simple Visual Concepts , 2007 .

[106]  Aaron Sloman,et al.  Exploring design space for an integrated intelligent system , 2009, Knowl. Based Syst..

[107]  L. Rips,et al.  From numerical concepts to concepts of number , 2008, Behavioral and Brain Sciences.

[108]  Tom Duckett,et al.  Mobile robot self-localisation using occupancy histograms and a mixture of Gaussian location hypotheses , 2001, Robotics Auton. Syst..

[109]  D. Dennett Kinds of Minds: Towards an Understanding of Consciousness , 1996 .

[110]  Wolfram Burgard,et al.  Estimating the Absolute Position of a Mobile Robot Using Position Probability Grids , 1996, AAAI/IAAI, Vol. 2.

[111]  Ana Cristina Murillo,et al.  SURF features for efficient robot localization with omnidirectional images , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[112]  Craig A. Knoblock,et al.  Information Gathering Plans With Sensing Actions , 1997, ECP.

[113]  Bernt Schiele,et al.  Functional Object Class Detection Based on Learned Affordance Cues , 2008, ICVS.

[114]  Sam Steel,et al.  Integrating Planning, Execution and Monitoring , 1988, AAAI.

[115]  L. Stark,et al.  Dissertation Abstract , 1994, Journal of Cognitive Education and Psychology.

[116]  Matthew Stone,et al.  Intention, interpretation and the computational structure of language , 2004, Cogn. Sci..

[117]  Guillermo Sapiro,et al.  Differential Invariant Signatures and Flows in Computer Vision: A Symmetry Group Approach , 1994, Geometry-Driven Diffusion in Computer Vision.

[118]  Barbara Caputo,et al.  SVM-based discriminative accumulation scheme for place recognition , 2008, 2008 IEEE International Conference on Robotics and Automation.

[119]  Tomaso Poggio,et al.  Computational vision and regularization theory , 1985, Nature.

[120]  Antonio Torralba,et al.  Context-based vision system for place and object recognition , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[121]  Craig A. Knoblock Planning, Executing, Sensing, and Replanning for Information Gathering , 1995, IJCAI.

[122]  Michael J. Black,et al.  Measure Locally, Reason Globally: Occlusion-sensitive Articulated Pose Estimation , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[123]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[124]  Ben Taskar,et al.  Markov Logic: A Unifying Framework for Statistical Relational Learning , 2007 .

[125]  Ales Leonardis,et al.  Incremental PCA for on-line visual learning and recognition , 2002, Object recognition supported by user interaction for service robots.

[126]  Anil K. Jain,et al.  Unsupervised Learning of Finite Mixture Models , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[127]  P. Subramanian Active Vision: The Psychology of Looking and Seeing , 2006 .

[128]  Daniel P. Huttenlocher,et al.  Pictorial Structures for Object Recognition , 2004, International Journal of Computer Vision.

[129]  Allen Newell,et al.  SOAR: An Architecture for General Intelligence , 1987, Artif. Intell..

[130]  Simone Frintrop,et al.  VOCUS: A Visual Attention System for Object Detection and Goal-Directed Search , 2006, Lecture Notes in Computer Science.

[131]  Maria Fox,et al.  PDDL2.1: An Extension to PDDL for Expressing Temporal Planning Domains , 2003, J. Artif. Intell. Res..

[132]  Achim J. Lilienthal,et al.  Incremental spectral clustering and seasons: Appearance-based localization in outdoor environments , 2008, 2008 IEEE International Conference on Robotics and Automation.

[133]  Bernt Schiele,et al.  Integrating representative and discriminant models for object category detection , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[134]  S. Liversedge,et al.  Saccadic eye movements and cognition , 2000, Trends in Cognitive Sciences.

[135]  Donald Geman,et al.  Coarse-to-Fine Face Detection , 2004, International Journal of Computer Vision.

[136]  Jason Baldridge,et al.  Multi-Modal Combinatory Categorial Grammar , 2003, EACL.

[137]  Richard Dearden,et al.  HiPPo: Hierarchical POMDPs for Planning Information Processing and Sensing Actions on a Robot , 2008, ICAPS.

[138]  Edmund H. Durfee,et al.  A Survey of Research in Distributed, Continual Planning , 1999, AI Mag..

[139]  Ankur Agarwal,et al.  Hyperfeatures - Multilevel Local Coding for Visual Recognition , 2006, ECCV.

[140]  Charles E. Thorpe,et al.  Simultaneous localization and mapping with detection and tracking of moving objects , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[141]  Aaron Sloman,et al.  The Altricial-Precocial Spectrum for Robots , 2005, IJCAI.

[142]  James T. Kwok,et al.  Simplifying Mixture Models Through Function Approximation , 2006, IEEE Transactions on Neural Networks.

[143]  Ruzena Bajcsy,et al.  Interactive Recognition and Representation of Functionality , 1995, Comput. Vis. Image Underst..

[144]  Joshua B. Tenenbaum,et al.  Global Versus Local Methods in Nonlinear Dimensionality Reduction , 2002, NIPS.

[145]  Candace L. Sidner,et al.  Where to look: a study of human-robot engagement , 2004, IUI '04.

[146]  John D. Kelleher,et al.  Mediating between Qualitative and Quantitative Representations for Task-Orientated Human-Robot Interaction , 2007, IJCAI.

[147]  Frank Dellaert,et al.  An MCMC-Based Particle Filter for Tracking Multiple Interacting Targets , 2004, ECCV.

[148]  Nils J. Nilsson,et al.  Shakey the Robot , 1984 .

[149]  Bernt Schiele,et al.  Decomposition, discovery and detection of visual categories using topic models , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[150]  Alex Pentland,et al.  Learning words from sights and sounds: a computational model , 2002, Cogn. Sci..

[151]  Dana S. Nau,et al.  Complexity results for hierarchical task-network planning , 1996 .

[152]  James F. Allen,et al.  An architecture for a generic dialogue shell , 2000, Natural Language Engineering.

[153]  Joydeep Ghosh,et al.  A Unified Model for Probabilistic Principal Surfaces , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[154]  Matej Kristan Incremental learning with Gaussian mixture models , 2008 .

[155]  W. Torgerson Multidimensional scaling: I. Theory and method , 1952 .

[156]  Michael A. Arbib,et al.  The handbook of brain theory and neural networks , 1995, A Bradford book.

[157]  Radford M. Neal Monte Carlo Implementation of Gaussian Process Models for Bayesian Regression and Classification , 1997, physics/9701026.

[158]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[159]  Dan Roth,et al.  Learning a Sparse Representation for Object Detection , 2002, ECCV.

[160]  James J. Little,et al.  Vision-based mobile robot localization and mapping using scale-invariant features , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[161]  Dieter Fox,et al.  Map-Based Multiple Model Tracking of a Moving Object , 2004, RoboCup.

[162]  Karen L. Myers CPEF: A Continuous Planning and Execution Framework , 1999, AI Mag..

[163]  Ingemar J. Cox,et al.  Dynamic Map Building for an Autonomous Mobile Robot , 1990, EEE International Workshop on Intelligent Robots and Systems, Towards a New Frontier of Applications.

[164]  M. Hayhoe,et al.  In what ways do eye movements contribute to everyday activities? , 2001, Vision Research.

[165]  Andrew Howard,et al.  Design and use paradigms for Gazebo, an open-source multi-robot simulator , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[166]  Barbara Caputo,et al.  Cue integration through discriminative accumulation , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[167]  Michael Zillich Incremental Indexing for Parameter-Free Perceptual Grouping , 2007 .

[168]  Aaron Sloman,et al.  Interacting Trajectories in Design Space and Niche Space: A Philosopher Speculates About Evolution , 2000, PPSN.

[169]  D. M. Titterington,et al.  Variational approximations in Bayesian model selection for finite mixture distributions , 2007, Comput. Stat. Data Anal..

[170]  Dana H. Ballard,et al.  Animate Vision , 1991, Artif. Intell..

[171]  Bernt Schiele,et al.  Multiple Object Class Detection with a Generative Model , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[172]  Joel W. Burdick,et al.  Propulsion and control of deformable bodies in an ideal fluid , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[173]  Richard M. Murray,et al.  Geometric phases and robotic locomotion , 1995, J. Field Robotics.

[174]  Christopher K. I. Williams,et al.  On a connection between object localization with a generative template of features and pose-space prediction methods , 2006 .

[175]  Nate Blaylock,et al.  Managing Communicative Intentions with Collaborative Problem Solving , 2003 .

[176]  G. Altmann,et al.  The time-course of prediction in incremental sentence processing: Evidence from anticipatory eye-movements , 2003 .

[177]  Sven Wachsmuth,et al.  An integrated system for cooperative man-machine interaction , 2001, Proceedings 2001 IEEE International Symposium on Computational Intelligence in Robotics and Automation (Cat. No.01EX515).

[178]  R. A. Brooks,et al.  Intelligence without Representation , 1991, Artif. Intell..

[179]  Sabine Moisan Program Supervision : Yakl and Pegase+ Reference and User Manual , 2003 .

[180]  M. Tanenhaus,et al.  Actions and affordances in syntactic ambiguity resolution. , 2004, Journal of experimental psychology. Learning, memory, and cognition.

[181]  V. Hafner Interpersonal Maps and the Body Correspondence Problem , 2005 .

[182]  Bohyung Han,et al.  Sequential Kernel Density Approximation and Its Application to Real-Time Visual Tracking , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[183]  Udo Frese,et al.  Closing a Million-Landmarks Loop , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[184]  Jianguo Zhang,et al.  The PASCAL Visual Object Classes Challenge , 2006 .

[185]  Sabine Moisan,et al.  What can program supervision do for program reuse? , 2000, IEE Proc. Softw..

[186]  Hector Muñoz-Avila,et al.  SHOP: Simple Hierarchical Ordered Planner , 1999, IJCAI.

[187]  Raman K. Mehra,et al.  Autonomous failure detection, identification and fault-tolerant estimation with aerospace applications , 1998, 1998 IEEE Aerospace Conference Proceedings (Cat. No.98TH8339).

[188]  Edoardo Ardizzone,et al.  Integrating Subsymbolic and Symbolic Processing in Artificial Vision , 1992 .

[189]  Mukund Balasubramanian,et al.  The Isomap Algorithm and Topological Stability , 2002, Science.

[190]  Wayne D. Gray,et al.  Basic objects in natural categories , 1976, Cognitive Psychology.

[191]  Michael R. Lowry,et al.  Learning Physical Descriptions From Functional Definitions, Examples, and Precedents , 1983, AAAI.

[192]  Stanley Peters,et al.  A multi-modal dialogue system for human-robot conversation , 2001, HTL 2001.

[193]  Jeremy Wyatt,et al.  Learning Causality and Intention in Human Actions , 2006, 2006 6th IEEE-RAS International Conference on Humanoid Robots.

[194]  Michael I. Jordan,et al.  Distance Metric Learning with Application to Clustering with Side-Information , 2002, NIPS.

[195]  Danica Kragic,et al.  A framework for vision based bearing only 3D SLAM , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[196]  Edmund H. Durfee,et al.  Coordination as distributed search in a hierarchical behavior space , 1991, IEEE Trans. Syst. Man Cybern..

[197]  Pietro Perona,et al.  Object class recognition by unsupervised scale-invariant learning , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[198]  Aaron Sloman,et al.  Architectural and Representational Requirements for Seeing Processes, Proto-affordances and Affordances , 2008, Logic and Probability for Scene Interpretation.

[199]  Rick Grush,et al.  The emulation theory of representation: Motor control, imagery, and perception , 2004, Behavioral and Brain Sciences.

[200]  Michael Brenner,et al.  Continual planning for cross-modal situated clarification in human-robot interaction , 2008, RO-MAN 2008 - The 17th IEEE International Symposium on Robot and Human Interactive Communication.

[201]  Alex M. Andrew,et al.  Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems , 2002 .

[202]  Dmitry B. Goldgof,et al.  Function-based recognition from incomplete knowledge of shape , 1993 .

[203]  Stefan Schaal,et al.  Local dimensionality reduction for locally weighted learning , 1997, Proceedings 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation CIRA'97. 'Towards New Computational Principles for Robotics and Automation'.

[204]  Geraint Rees,et al.  Neural correlates of consciousness in humans , 2002, Nature Reviews Neuroscience.

[205]  R. Brown How shall a thing be called. , 1958, Psychological review.

[206]  Cristian Sminchisescu,et al.  BM³E : Discriminative Density Propagation for Visual Tracking , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[207]  Trevor Darrell,et al.  Avoiding the "streetlight effect": tracking by exploring likelihood modes , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[208]  Jerrold E. Marsden,et al.  Symmetries in Motion: Geometric Foundations of Motion Control , 1998 .

[209]  Heiko Wersing,et al.  Rapid Online Learning of Objects in a Biologically Motivated Recognition Architecture , 2005, DAGM-Symposium.

[210]  David W. Scott,et al.  From Kernels to Mixtures , 2001, Technometrics.

[211]  Rajesh P. N. Rao,et al.  Learning Lie Groups for Invariant Visual Perception , 1998, NIPS.

[212]  Luc Steels,et al.  Grounding adaptive language games in robotic agents , 1997 .

[213]  Geert-Jan M. Kruijff,et al.  Context-sensitive Utterance Planning for CCG , 2005, ENLG.

[214]  Benjamin Kuipers,et al.  Integrating Multiple Representations of Spatial Knowledge for Mapping, Navigation, and Communication , 2007, Interaction Challenges for Intelligent Assistants.

[215]  Scott L. Brincat,et al.  Dynamic Shape Synthesis in Posterior Inferotemporal Cortex , 2006, Neuron.

[216]  Michael P. Kaschak,et al.  Grounding language in action , 2002, Psychonomic bulletin & review.

[217]  Jason Baldridge,et al.  Coupling CCG and Hybrid Logic Dependency Semantics , 2002, ACL.

[218]  Johan Bos,et al.  Meaningful Conversation with a Mobile Robot , 2003, EACL.

[219]  S. B. Torrance,et al.  The Mind and the machine : philosophical aspects of artificial intelligence , 1984 .

[220]  John D. Kelleher,et al.  Information Fusion for Visual Reference Resolution in Dynamic Situated Dialogue , 2006, PIT.

[221]  Benjamin Kuipers,et al.  Consciousness: Drinking from the Firehose of Experience , 2005, AAAI.

[222]  Henrik I. Christensen,et al.  The M-Space Feature Representation for SLAM , 2007, IEEE Transactions on Robotics.

[223]  Mark Steedman,et al.  On not being led up the garden path : The use of context by the psychological syntax processor , 1985 .

[224]  Wolfram Burgard,et al.  Efficient Failure Detection for Mobile Robots Using Mixed-Abstraction Particle Filters , 2006, EUROS.

[225]  Mark Steedman,et al.  Interaction with context during human sentence processing , 1988, Cognition.

[226]  L. Steels The symbol grounding problem has been solved, so what’s next? , 2008 .

[227]  James J. Clark,et al.  Data Fusion for Sensory Information Processing Systems , 1990 .

[228]  Tony Lindeberg,et al.  Object recognition using composed receptive field histograms of higher dimensionality , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[229]  Henrik I. Christensen,et al.  Bringing Together Human and Robotic Environment Representations - A Pilot Study , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[230]  Neil D. Lawrence,et al.  Probabilistic Non-linear Principal Component Analysis with Gaussian Process Latent Variable Models , 2005, J. Mach. Learn. Res..

[231]  Michael Brenner Situation-Aware Interpretation, Planning and Execution of User Commands by Autonomous Robots , 2007, RO-MAN 2007 - The 16th IEEE International Symposium on Robot and Human Interactive Communication.

[232]  Barbara Caputo,et al.  Confidence-based cue integration for visual place recognition , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[233]  Michael White,et al.  Efficient Realization of Coordinate Structures in Combinatory Categorial Grammar , 2006 .

[234]  E. Nagel Meaning and Necessity. A Study in Semantics and Modal Logic , 1948 .

[235]  Bernt Schiele,et al.  How Good are Local Features for Classes of Geometric Objects , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[236]  Jacob Goldberger,et al.  Hierarchical Clustering of a Mixture Model , 2004, NIPS.

[237]  Manik Varma,et al.  Learning The Discriminative Power-Invariance Trade-Off , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[238]  Luc Steels,et al.  Aibo''s first words. the social learning of language and meaning. Evolution of Communication , 2002 .

[239]  J. Wolfe,et al.  The Psychophysical Evidence for a Binding Problem in Human Vision , 1999, Neuron.

[240]  Jos J. A. Van Berkum,et al.  Chapter 13 Sentence Comprehension in a Wider Discourse: Can We Use ERPs To Keep Track of Things? , 2004 .

[241]  Luc Steels,et al.  Semiotic Dynamics for Embodied Agents , 2006, IEEE Intelligent Systems.

[242]  David Filliat,et al.  A visual bag of words method for interactive qualitative localization and mapping , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[243]  Justus H. Piater,et al.  Statistical Learning of Visual Feature Hierarchies , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) - Workshops.

[244]  Vapnik,et al.  SVMs for Histogram Based Image Classification , 1999 .

[245]  T. Shallice,et al.  CONTENTION SCHEDULING AND THE CONTROL OF ROUTINE ACTIVITIES , 2000, Cognitive neuropsychology.

[246]  Simone Frintrop,et al.  Active gaze control for attentional visual SLAM , 2008, 2008 IEEE International Conference on Robotics and Automation.

[247]  James F. Allen,et al.  Towards Conversational Human-Computer Interaction , 2000 .

[248]  Brian C. Williams,et al.  Hybrid estimation of complex systems , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[249]  Z. Pylyshyn Is vision continuous with cognition? The case for cognitive impenetrability of visual perception. , 1999, The Behavioral and brain sciences.

[250]  Wolfram Burgard,et al.  Semantic labeling of places using information extracted from laser and vision sensor data , 2006 .

[251]  Gert Cauwenberghs,et al.  Incremental and Decremental Support Vector Machine Learning , 2000, NIPS.

[252]  Hermann Haken Synergetic computers and cognition: a top-down approach to neural nets , 1991 .

[253]  Aaron Sloman,et al.  The St. Thomas Common Sense Symposium: Designing Architectures for Human-Level Intelligence , 2004, AI Mag..

[254]  Henrik I. Christensen,et al.  Situated dialogue and understanding spatial organization: Knowing what is where and what you can do there , 2006, ROMAN 2006 - The 15th IEEE International Symposium on Robot and Human Interactive Communication.

[255]  G. Altmann,et al.  Incremental interpretation at verbs: restricting the domain of subsequent reference , 1999, Cognition.

[256]  John W. Sammon,et al.  A Nonlinear Mapping for Data Structure Analysis , 1969, IEEE Transactions on Computers.

[257]  G. Csibra,et al.  Teleological reasoning in infancy: the naı̈ve theory of rational action , 2003, Trends in Cognitive Sciences.

[258]  David G. Lowe,et al.  Multiclass Object Recognition with Sparse, Localized Features , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[259]  B. Hommel,et al.  Cognitive control of attention and action: Issues and trends , 2002, Psychological research.

[260]  Matthias Scheutz,et al.  Incremental natural language processing for HRI , 2007, 2007 2nd ACM/IEEE International Conference on Human-Robot Interaction (HRI).

[261]  Mark Steedman,et al.  Temporal Ontology and Temporal Reference , 1988, CL.

[262]  Bartlett W. Mel,et al.  Minimizing Binding Errors Using Learned Conjunctive Features , 2000, Neural Computation.

[263]  Tucker R. Balch,et al.  Symmetry in Markov Decision Processes and its Implications for Single Agent and Multiagent Learning , 2001, ICML.

[264]  Lior Wolf,et al.  Perception Strategies in Hierarchical Vision Systems , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[265]  R. Taylor A User's Guide to Measure-Theoretic Probability , 2003 .

[266]  John J. Leonard,et al.  Explore and return: experimental validation of real-time concurrent mapping and localization , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[267]  Deb Roy,et al.  Grounded Semantic Composition for Visual Scenes , 2011, J. Artif. Intell. Res..

[268]  Ian Horswill,et al.  Polly: A Vision-Based Artificial Agent , 1993, AAAI.

[269]  Alessandro Saffiotti,et al.  A virtual sensor for room detection , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[270]  Cordelia Schmid,et al.  Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[271]  Wolfram Burgard,et al.  Semantic Place Classification of Indoor Environments with Mobile Robots Using Boosting , 2005, AAAI.

[272]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[273]  Simon J. Godsill,et al.  On sequential simulation-based methods for Bayesian filtering , 1998 .

[274]  Pietro Perona,et al.  Learning object categories from Google's image search , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[275]  A. Noë,et al.  A sensorimotor account of vision and visual consciousness. , 2001, The Behavioral and brain sciences.

[276]  Henrik I. Christensen,et al.  Situated Dialogue and Spatial Organization: What, Where… and Why? , 2007 .

[277]  P. L. Adams THE ORIGINS OF INTELLIGENCE IN CHILDREN , 1976 .

[278]  Mica R. Endsley,et al.  Theoretical Underpinnings of Situation Awareness, A Critical Review , 2000 .

[279]  Wolfram Burgard,et al.  Adaptive Body Scheme Models for Robust Robotic Manipulation , 2008, Robotics: Science and Systems.

[280]  Aaron Sloman,et al.  Some Requirements for Human-Like Robots: Why the Recent Over-Emphasis on Embodiment Has Held Up Progress , 2009, Creating Brain-Like Intelligence.

[281]  Matthias Scheutz,et al.  A real-time robotic model of human reference resolution using visual constraints , 2004, Connect. Sci..

[282]  L. Barsalou,et al.  Whither structured representation? , 1999, Behavioral and Brain Sciences.

[283]  Wolfram Burgard,et al.  Conceptual spatial representations for indoor mobile robots , 2008, Robotics Auton. Syst..

[284]  John D. Kelleher,et al.  Proximity in Context: An Empirically Grounded Computational Model of Proximity for Processing Topological Spatial Expressions , 2006, ACL.

[285]  J. Kruskal Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis , 1964 .

[286]  Brian Cantwell Smith,et al.  On the origin of objects , 1997, Trends in Cognitive Sciences.

[287]  Nebojsa Jojic,et al.  LOCUS: learning object classes with unsupervised segmentation , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[288]  Cordelia Schmid,et al.  A performance evaluation of local descriptors , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[289]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[290]  Aaron Sloman,et al.  Building cognitively rich agents using the SIM_Agent toolkit , 1999, CACM.

[291]  Pat Langley,et al.  A Unified Cognitive Architecture for Physical Agents , 2006, AAAI.

[292]  Rakesh Mohan,et al.  Multidimensional Indexing for Recognizing Visual Shapes , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[293]  Barbara Caputo,et al.  Incremental learning for place recognition in dynamic environments , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[294]  Marinette Revenu,et al.  Borg: A Knowledge-Based System for Automatic Generation of Image Processing Programs , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[295]  John C. Platt,et al.  Fast training of support vector machines using sequential minimal optimization, advances in kernel methods , 1999 .

[296]  Hongbin Wang,et al.  Highly efficient incremental estimation of Gaussian mixture models for online data stream clustering , 2005, SPIE Defense + Commercial Sensing.

[297]  H. Barlow Cerebral Cortex as Model Builder , 1987 .

[298]  Richard Montgomery,et al.  Optimal Control of Deformable Bodies and Its Relation to Gauge Theory , 1991 .

[299]  Juan D. Tardós Representing partial and uncertain sensorial information using the theory of symmetries , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[300]  Peter K. Allen,et al.  Topological mobile robot localization using fast vision techniques , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[301]  James F. Allen,et al.  An architecture for more realistic conversational systems , 2001, IUI '01.

[302]  Barbara Caputo,et al.  Recognition with local features: the kernel recipe , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[303]  Hans P. Moravec Sensor Fusion in Certainty Grids for Mobile Robots , 1988, AI Mag..

[304]  J. L. Wyatt,et al.  Towards an Empirical Exploration of Design Space , 2007 .

[305]  Stefan Roth,et al.  People-tracking-by-detection and people-detection-by-tracking , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[306]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[307]  Bernt Schiele,et al.  Cross‐modal Learning of Visual Categories using Different Levels of Supervision , 2007, ICVS 2007.

[308]  Michael I. Jordan,et al.  Mixtures of Probabilistic Principal Component Analyzers , 2001 .

[309]  Pietro Perona,et al.  Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[310]  A. Sloman,et al.  The computer revolution in philosophy , 1978 .

[311]  Roland Siegwart,et al.  Robox at Expo.02: A large-scale installation of personal robots , 2003, Robotics Auton. Syst..

[312]  Adrian Corduneanu,et al.  Variational Bayesian Model Selection for Mixture Distributions , 2001 .

[313]  Lindsay Kleeman,et al.  Interactive SLAM using Laser and Advanced Sonar , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[314]  S Zeki,et al.  The autonomy of the visual systems and the modularity of conscious vision. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[315]  Jackie Chappell,et al.  How an animal or robot with 3-D manipulation skills experiences the world , 2006 .

[316]  D. N. Lee The optic flow field: the foundation of vision. , 1980, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[317]  D. Baraff An Introduction to Physically Based Modeling : Rigid Body Simulation II — Nonpenetration Constraints , 1997 .

[318]  A. Trehub The cognitive brain , 1991 .

[319]  Nick Hawes,et al.  Crossmodal content binding in information-processing architectures , 2008, 2008 3rd ACM/IEEE International Conference on Human-Robot Interaction (HRI).

[320]  Deb Roy,et al.  Probabilistic grounding of situated speech using plan recognition and reference resolution , 2005, ICMI '05.

[321]  A. Sloman THE PRIMACY OF NON-COMMUNICATIVE LANGUAGE , 2000 .

[322]  M. C. Jones,et al.  A Brief Survey of Bandwidth Selection for Density Estimation , 1996 .

[323]  Aaron Sloman,et al.  Natural and Artificial Meta-Configured Altricial Information-Processing Systems , 2007, Int. J. Unconv. Comput..

[324]  Yuki Kamide,et al.  Now you see it, now you don't: mediating the mapping between language and the visual world , 2004 .

[325]  Robert Pless,et al.  Isomap and Nonparametric Models of Image Deformation , 2005, 2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION'05) - Volume 1.

[326]  Pierre-Louis Bazin,et al.  Structure from Motion: A New Look from the Point of View of Invariant Theory , 2004, SIAM J. Appl. Math..

[327]  Jussi Rintanen,et al.  Constructing Conditional Plans by a Theorem-Prover , 1999, J. Artif. Intell. Res..

[328]  Sanja Fidler,et al.  Hierarchical Statistical Learning of Generic Parts of Object Structure , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[329]  Thora Tenbrink,et al.  Telling Rolland Where to Go: HRI Dialogues on Route Navigation , 2009, Spatial Language and Dialogue.

[330]  Richard Washington,et al.  On-board real-time state and fault identification for rovers , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[331]  Robert Dale,et al.  Computational Interpretations of the Gricean Maxims in the Generation of Referring Expressions , 1995, Cogn. Sci..

[332]  T. McNamara Mental representations of spatial relations , 1986, Cognitive Psychology.

[333]  Stephan Oepen,et al.  High Efficiency Realization for a Wide-Coverage Unification Grammar , 2005, IJCNLP.

[334]  J. Gibson The Ecological Approach to Visual Perception , 1979 .

[335]  Hans P. Moravec,et al.  High resolution maps from wide angle sonar , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[336]  G. Swaminathan Robot Motion Planning , 2006 .

[337]  Yali Amit,et al.  A Computational Model for Visual Selection , 1999, Neural Computation.

[338]  Benjamin Kuipers,et al.  Representing Knowledge of Large-scale Space , 1977 .

[339]  Thomas Martinetz,et al.  'Neural-gas' network for vector quantization and its application to time-series prediction , 1993, IEEE Trans. Neural Networks.

[340]  Roland Siegwart,et al.  Cognitive maps for mobile robots - an object based approach , 2007, Robotics Auton. Syst..

[341]  F. van der Velde,et al.  Neural blackboard architectures of combinatorial structures in cognition , 2006, Behavioral and Brain Sciences.

[342]  Deb Roy,et al.  Situated Language Understanding as Filtering Perceived Affordances , 2007, Cogn. Sci..

[343]  David Kirsh,et al.  Today the Earwig, Tomorrow Man? , 1991, Artif. Intell..

[344]  James F. Allen,et al.  Human-Machine Collaborative Planning , 2002 .

[345]  E. Jablonka,et al.  Evolution in Four Dimensions: Genetic, Epigenetic, Behavioral, and Symbolic Variation in the History of Life , 2005 .

[346]  Tom Downs,et al.  Exact Simplification of Support Vector Solutions , 2002, J. Mach. Learn. Res..

[347]  Trevor Darrell,et al.  Unsupervised Learning of Categories from Sets of Partially Matching Image Features , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[348]  James J. Little,et al.  /spl sigma/SLAM: stereo vision SLAM using the Rao-Blackwellised particle filter and a novel mixture proposal distribution , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[349]  Bernt Schiele,et al.  Robust Object Detection with Interleaved Categorization and Segmentation , 2008, International Journal of Computer Vision.

[350]  Paul Vogt,et al.  The physical symbol grounding problem , 2002, Cognitive Systems Research.

[351]  William Bialek,et al.  Optimal Manifold Representation of Data: An Information Theoretic Approach , 2003, NIPS.

[352]  Aaron Sloman HOW TO DERIVE "BETTER" FROM "IS" , 2006 .

[353]  Patric Jensfelt,et al.  Lessons Learnt from Scenario-Based Integration , 2010, Cognitive Systems.

[354]  Thomas Voegtlin,et al.  Recursive principal components analysis , 2005, Neural Networks.

[355]  Chao He,et al.  Probability Density Estimation from Optimally Condensed Data Samples , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[356]  Carl Hewitt,et al.  A Universal Modular ACTOR Formalism for Artificial Intelligence , 1973, IJCAI.

[357]  M. Tanenhaus,et al.  Continuous mapping from sound to meaning in spoken-language comprehension: immediate effects of verb-based thematic constraints. , 2004, Journal of experimental psychology. Learning, memory, and cognition.

[358]  John D. Kelleher,et al.  Incremental Generation of Spatial Referring Expressions in Situated Dialog , 2006, ACL.

[359]  Pat Langley,et al.  Cognitive architectures: Research issues and challenges , 2009, Cognitive Systems Research.

[360]  A.M. Arsenic,et al.  Developmental learning on a humanoid robot , 2004, 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541).

[361]  John D. Kelleher,et al.  Structural descriptions in human-assisted robot visual learning , 2006, HRI '06.

[362]  PoggioTomaso,et al.  Robust Object Recognition with Cortex-Like Mechanisms , 2007 .

[363]  Michael Collins,et al.  Parameter Estimation for Statistical Parsing Models: Theory and Practice of , 2001, IWPT.

[364]  Luc Steels,et al.  Shared grounding of event descriptions by autonomous robots , 2003, Robotics Auton. Syst..

[365]  Gustavo Deco,et al.  Computational neuroscience of vision , 2002 .

[366]  C Van Petten,et al.  Time course of word identification and semantic integration in spoken language. , 1999, Journal of experimental psychology. Learning, memory, and cognition.

[367]  J. Jonides,et al.  Evidence of hierarchies in cognitive maps , 1985, Memory & cognition.

[368]  Nicholas J. Butko,et al.  Active perception , 2010 .

[369]  John A. Bateman,et al.  Enabling technology for multilingual natural language generation: the KPML development environment , 1997, Natural Language Engineering.

[370]  Hector J. Levesque,et al.  What Is Planning in the Presence of Sensing? , 1996, AAAI/IAAI, Vol. 2.

[371]  Sebastian Lang,et al.  BIRON - The Bielefeld Robot Companion , 2004 .

[372]  Colin M. Brown,et al.  Anticipating upcoming words in discourse: evidence from ERPs and reading times. , 2005, Journal of experimental psychology. Learning, memory, and cognition.

[373]  Candace L. Sidner,et al.  Explorations in engagement for humans and robots , 2005, Artif. Intell..

[374]  Tetsuo Ono,et al.  Robovie: an interactive humanoid robot , 2001 .

[375]  C. Koch,et al.  A framework for consciousness , 2003, Nature Neuroscience.

[376]  Cordelia Schmid,et al.  3D Object Modeling and Recognition Using Local Affine-Invariant Image Descriptors and Multi-View Spatial Constraints , 2006, International Journal of Computer Vision.

[377]  Matthias Scheutz The Evolution of Simple Affective States in Multi-Agent Environments , 2001 .

[378]  F. Wilczek,et al.  Geometry of self-propulsion at low Reynolds number , 1989, Journal of Fluid Mechanics.

[379]  Hugh F. Durrant-Whyte,et al.  A solution to the simultaneous localization and map building (SLAM) problem , 2001, IEEE Trans. Robotics Autom..

[380]  Joel W. Burdick,et al.  Trajectory generation for kinematic legged robots , 1997, Proceedings of International Conference on Robotics and Automation.

[381]  Terry Winograd,et al.  Procedures As A Representation For Data In A Computer Program For Understanding Natural Language , 1971 .

[382]  Stefan Rüping,et al.  Incremental Learning with Support Vector Machines , 2001, ICDM.

[383]  Bradley J. Clement,et al.  Continual coordination through shared activities , 2003, AAMAS '03.

[384]  Kai Oliver Arras,et al.  Hybrid, high-precision localisation for the mail distributing mobile robot system MOPS , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[385]  James M. Rehg,et al.  Statistical Color Models with Application to Skin Detection , 2004, International Journal of Computer Vision.

[386]  Wolfram Burgard,et al.  An efficient fastSLAM algorithm for generating maps of large-scale cyclic environments from raw laser range measurements , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[387]  Bernhard Nebel,et al.  Continual planning and acting in dynamic multiagent environments , 2006, PCAR '06.

[388]  Jiri Matas,et al.  On representation and matching of multi-coloured objects , 1995, Proceedings of IEEE International Conference on Computer Vision.

[389]  Edmund H. Durfee,et al.  An efficient algorithm for multiagent plan coordination , 2005, AAMAS '05.

[390]  Michael E. Tipping,et al.  Probabilistic Principal Component Analysis , 1999 .

[391]  F. Gregory The conscious mind: In search of a fundamental theory , 1998 .

[392]  Frédéric Jurie,et al.  Groups of Adjacent Contour Segments for Object Detection , 2008, IEEE Trans. Pattern Anal. Mach. Intell..

[393]  Bernt Schiele,et al.  An Implicit Shape Model for Combined Object Categorization and Segmentation , 2006, Toward Category-Level Object Recognition.

[394]  Marc Schröder,et al.  The German Text-to-Speech Synthesis System MARY: A Tool for Research, Development and Teaching , 2003, Int. J. Speech Technol..

[395]  Illah R. Nourbakhsh,et al.  Appearance-based place recognition for topological localization , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[396]  E. Gibson,et al.  An Ecological Approach to Perceptual Learning and Development , 2000 .

[397]  Fahiem Bacchus,et al.  Extending the Knowledge-Based Approach to Planning with Incomplete Information and Sensing , 2004, ICAPS.

[398]  M. Tomasello,et al.  Altruistic Helping in Human Infants and Young Chimpanzees , 2006, Science.

[399]  Xin Yao,et al.  Parallel Problem Solving from Nature PPSN VI , 2000, Lecture Notes in Computer Science.

[400]  Learning Causes : Psychological Explanations of Causal Explanation , 1998 .

[401]  Richard Dearden,et al.  Particle Filters for Real-Time Fault Detection in Planetary Rovers , 2001 .

[402]  G. Humphreys,et al.  Explorations in Design Space , 1994 .

[403]  Brian Yamauchi,et al.  A frontier-based approach for autonomous exploration , 1997, Proceedings 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation CIRA'97. 'Towards New Computational Principles for Robotics and Automation'.

[404]  Colin M. Brown,et al.  When and how do listeners relate a sentence to the wider discourse? Evidence from the N400 effect. , 2003, Brain research. Cognitive brain research.

[405]  Julie C. Sedivy,et al.  Subject Terms: Linguistics Language Eyes & eyesight Cognition & reasoning , 1995 .

[406]  Makoto Yokoo,et al.  Algorithms for Distributed Constraint Satisfaction: A Review , 2000, Autonomous Agents and Multi-Agent Systems.

[407]  Michael P. Kaschak,et al.  On doing two things at once: Temporal constraints on actions in language comprehension , 2004, Memory & cognition.

[408]  Salvatore Gaglio,et al.  A Cognitive Architecture for Artificial Vision , 1997, Artif. Intell..

[409]  Nicholas Roy,et al.  Topological mapping using spectral clustering and classification , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[410]  G. Griffin,et al.  Caltech-256 Object Category Dataset , 2007 .

[411]  Danijel Skocaj,et al.  Continuous Learning of Simple Visual Concepts Using Incremental Kernel Density Estimation , 2016, VISAPP.

[412]  Roland Siegwart,et al.  Multisensor on-the-fly localization using laser and vision , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[413]  Malte Helmert,et al.  The Fast Downward Planning System , 2006, J. Artif. Intell. Res..

[414]  John W. Tukey,et al.  A Projection Pursuit Algorithm for Exploratory Data Analysis , 1974, IEEE Transactions on Computers.

[415]  Kim K. Baldridge,et al.  Adapting Chart Realization to CCG , 2003, ENLG@EACL.

[416]  Stuart J. Russell,et al.  Dynamic bayesian networks: representation, inference and learning , 2002 .

[417]  Bernt Schiele,et al.  Towards Unsupervised Discovery of Visual Categories , 2006, DAGM-Symposium.

[418]  Bernt Schiele,et al.  Pedestrian detection in crowded scenes , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[419]  M. Pickering,et al.  Toward a mechanistic psychology of dialogue , 2004, Behavioral and Brain Sciences.

[420]  Benjamin Kuipers,et al.  Map Learning with Uninterpreted Sensors and Effectors , 1995, Artif. Intell..

[421]  Fahiem Bacchus,et al.  A Knowledge-Based Approach to Planning with Incomplete Information and Sensing , 2002, AIPS.

[422]  Gil J. Ettinger,et al.  Large hierarchical object recognition using libraries of parameterized model sub-parts , 1988, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.

[423]  Martin Kay,et al.  Syntactic Process , 1979, ACL.

[424]  Matthew P. Wand,et al.  Kernel Smoothing , 1995 .

[425]  Edmund H. Durfee,et al.  Distributed Continual Planning for Unmanned Ground Vehicle Teams , 1999, AI Mag..

[426]  Jan-Olof Eklundh,et al.  Detecting and tracking moving objects from a mobile platform using a laser range scanner , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[427]  J. Trueswell,et al.  Cognitive control and parsing: Reexamining the role of Broca’s area in sentence comprehension , 2005, Cognitive, affective & behavioral neuroscience.

[428]  Aaron Sloman,et al.  Architectural and Representational Requirements for Seeing Processes and Aordances. , 2008 .

[429]  Bernhard Nebel,et al.  The FF Planning System: Fast Plan Generation Through Heuristic Search , 2011, J. Artif. Intell. Res..

[430]  R. Shepard The analysis of proximities: Multidimensional scaling with an unknown distance function. I. , 1962 .

[431]  David E. Smith,et al.  Extending Graphplan to handle uncertainty and sensing actions , 1998, AAAI 1998.

[432]  Colin M. Brown,et al.  Semantic Integration in Sentences and Discourse: Evidence from the N400 , 1999, Journal of Cognitive Neuroscience.

[433]  David A. Forsyth,et al.  Tracking People by Learning Their Appearance , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[434]  Christer Bäckström Computational Aspects of Reordering Plans , 1998, J. Artif. Intell. Res..

[435]  M K Tanenhaus,et al.  Eye Movements and Lexical Access in Spoken-Language Comprehension: Evaluating a Linking Hypothesis between Fixations and Linguistic Processing , 2000, Journal of psycholinguistic research.

[436]  Ron Sun,et al.  Cognition and Multi-Agent Interaction: The CLARION Cognitive Architecture: Extending Cognitive Modeling to Social Simulation , 2005 .

[437]  Luc Van Gool,et al.  Object Detection by Contour Segment Networks , 2006, ECCV.

[438]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[439]  John McCarthy The well-designed child , 2008, Artif. Intell..

[440]  M. Tanenhaus,et al.  Context effects in syntactic ambiguity resolution: discourse and semantic influences in parsing reduced relative clauses. , 1993, Canadian journal of experimental psychology = Revue canadienne de psychologie experimentale.

[441]  Marc'Aurelio Ranzato,et al.  Unsupervised Learning of Invariant Feature Hierarchies with Applications to Object Recognition , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[442]  S. Klinke,et al.  Exploratory Projection Pursuit , 1995 .

[443]  Sanja Fidler,et al.  Combining reconstructive and discriminative subspace methods for robust classification and regression by subsampling , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[444]  Aaron Sloman Actual Possibilities , 1996, KR.

[445]  Antonio Torralba,et al.  Sharing Visual Features for Multiclass and Multiview Object Detection , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[446]  Albert-Ludwigs A Continual Multiagent Planning Approach to Situated Dialogue , 2008 .

[447]  J Kevin O'Regan,et al.  Color naming, unique hues, and hue cancellation predicted from singularities in reflection properties. , 2006, Visual neuroscience.

[448]  Oscar Martinez Mozos Semantic place labeling with mobile robots , 2008 .

[449]  A. Sloman,et al.  A Study of Motive Processing and Attention , 1993 .

[450]  Paul D. Allopenna,et al.  Tracking the Time Course of Spoken Word Recognition Using Eye Movements: Evidence for Continuous Mapping Models , 1998 .