First-Principles Prediction of Structure and Properties of the Cu2TeO6 Monolayer

In this work, first-principles calculations have been utilized to predict the existence of a new Cu2TeO6 monolayer. It is shown that the predicted material is dynamically and thermally stable. The Cu2TeO6 monolayer is also found to be a narrow band gap semiconductor with a band gap size of 0.20 eV. Considering the obtained properties of the Cu2TeO6 monolayer, it is proposed for applications in various nanodevices in electronics and straintronics.

[1]  S. Mahapatra,et al.  Massive Monte Carlo simulations-guided interpretable learning of two-dimensional Curie temperature , 2022, Patterns.

[2]  Abu Dzar Al-Ghiffari,et al.  Systematic Review of Molybdenum Disulfide for Solar Cell Applications: Properties, Mechanism and Application , 2022, Materials Today Communications.

[3]  Y. Laosiritaworn,et al.  First-principles prediction of strain-induced Dirac semimetal state and negative Poisson's ratio in TiZrB4 monolayer , 2022, Computational Condensed Matter.

[4]  K. Chew,et al.  Size-controllable synthesis of 2D Mn3O4 triangular-shaped nanosheets by thermal chemical vapor deposition , 2022, Physica E: Low-dimensional Systems and Nanostructures.

[5]  R. Che,et al.  Self-Assembly MXene-rGO/CoNi Film with Massive Continuous Heterointerfaces and Enhanced Magnetic Coupling for Superior Microwave Absorber , 2022, Nano-Micro Letters.

[6]  W. Cao,et al.  Family of Two-Dimensional Transition Metal Dichlorides: Fundamental Properties, Structural Defects, and Environmental Stability , 2022, Journal of Physical Chemistry Letters.

[7]  H. Deng,et al.  The enhancement in dielectric properties for PVDF based composites due to the incorporation of 2D TiO2 nanobelt containing small amount of MWCNTs , 2021 .

[8]  Yu Zhang,et al.  Bandgap prediction of two-dimensional materials using machine learning , 2021, PloS one.

[9]  F. Miao,et al.  Straintronics with van der Waals materials , 2021 .

[10]  K. Zhou,et al.  Pentadiamond: A Highly Efficient Electron Transport Layer for Perovskite Solar Cells , 2021 .

[11]  J. W. Ward,et al.  Bottom-up wet-chemical synthesis of a two-dimensional porous carbon material with high supercapacitance using a cascade coupling/cyclization route , 2021, Journal of Materials Chemistry A.

[12]  M. Houssa,et al.  Two dimensional V2O3 and its experimental feasibility as robust room-temperature magnetic Chern insulator , 2021, npj 2D Materials and Applications.

[13]  Aldo H. Romero,et al.  MechElastic: A Python library for analysis of mechanical and elastic properties of bulk and 2D materials , 2020, Comput. Phys. Commun..

[14]  Sakineh Chabi,et al.  Two-Dimensional Silicon Carbide: Emerging Direct Band Gap Semiconductor , 2020, Nanomaterials.

[15]  K. Zhou,et al.  Two-Dimensional Black Phosphorus Carbide: Rippling and Formation of Nanotubes , 2020, The Journal of Physical Chemistry C.

[16]  Nathan C Frey,et al.  Engineering Magnetic Phases in 2D non-van der Waals Transition Metal Oxides. , 2019, Nano letters.

[17]  Weida Hu,et al.  Nb2SiTe4: A Stable Narrow-Gap Two-Dimensional Material with Ambipolar Transport and Mid-Infrared Response. , 2019, ACS nano.

[18]  Yury Gogotsi,et al.  The Rise of MXenes. , 2019, ACS nano.

[19]  Marcin Ma'zdziarz Comment on ‘The Computational 2D Materials Database: high-throughput modeling and discovery of atomically thin crystals’ , 2018, 2D Materials.

[20]  Jiangyu Li,et al.  Mapping the elastic properties of two-dimensional MoS2 via bimodal atomic force microscopy and finite element simulation , 2018, npj Computational Materials.

[21]  Ashutosh Kumar Singh,et al.  A Non-van der Waals Two-Dimensional Material from Natural Titanium Mineral Ore Ilmenite , 2018 .

[22]  Robert Vajtai,et al.  Exfoliation of a non-van der Waals material from iron ore hematite , 2018, Nature Nanotechnology.

[23]  K. Zhou,et al.  Exploring the charge localization and band gap opening of borophene: a first-principles study. , 2017, Nanoscale.

[24]  Weiwei Sun,et al.  A new 2D monolayer BiXene, M2C (M = Mo, Tc, Os). , 2016, Nanoscale.

[25]  Qian Wang,et al.  TiC2: a new two-dimensional sheet beyond MXenes. , 2016, Nanoscale.

[26]  Changxin Chen,et al.  High-work-function metal/carbon nanotube/low-work-function metal hybrid junction photovoltaic device , 2015 .

[27]  Yi Xie,et al.  Ultrathin Black Phosphorus Nanosheets for Efficient Singlet Oxygen Generation. , 2015, Journal of the American Chemical Society.

[28]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[29]  Renzhi Ma,et al.  Two-dimensional oxide and hydroxide nanosheets: controllable high-quality exfoliation, molecular assembly, and exploration of functionality. , 2015, Accounts of chemical research.

[30]  Martin Pumera,et al.  Layered transition-metal dichalcogenides (MoS2 and WS2) for sensing and biosensing , 2014 .

[31]  Yong-Wei Zhang,et al.  Layer-dependent Band Alignment and Work Function of Few-Layer Phosphorene , 2014, Scientific Reports.

[32]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[33]  J. Coleman,et al.  Liquid Exfoliation of Layered Materials , 2013, Science.

[34]  P. Ajayan,et al.  Synthesis and photoresponse of large GaSe atomic layers. , 2013, Nano letters.

[35]  E. Johnston-Halperin,et al.  Progress, challenges, and opportunities in two-dimensional materials beyond graphene. , 2013, ACS nano.

[36]  K. Patel,et al.  Electronic structure investigation of MoS2 and MoSe2 using angle-resolved photoemission spectroscopy and ab initio band structure studies , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[37]  Sean Li,et al.  Ab initio study of phase stability in doped TiO2 , 2012, 1210.7555.

[38]  R. E. Mapasha,et al.  Mechanical properties of graphene and boronitrene , 2012 .

[39]  F. Peeters,et al.  Thermomechanical properties of graphene: valence force field model approach , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[40]  Jun Lou,et al.  Direct growth of graphene/hexagonal boron nitride stacked layers. , 2011, Nano letters.

[41]  L. Colombo,et al.  Elastic properties of hydrogenated graphene , 2010, 1010.5186.

[42]  Dae‐Shik Seo,et al.  Application of High Work Function Anode for Organic Light Emitting Diode , 2009 .

[43]  Klaus Kern,et al.  Contact and edge effects in graphene devices. , 2008, Nature nanotechnology.

[44]  A. Assoud,et al.  Synthesis, structure, and magnetic properties of the layered copper(II) oxide Na2Cu2TeO6. , 2005, Inorganic chemistry.

[45]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[46]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[47]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[48]  Steven G. Louie,et al.  Boron Nitride Nanotubes , 1995, Science.

[49]  Changping Yang,et al.  2D high temperature ferromagnetic Co2Ti2Sn2 monolayer with tunable magnetic anisotropy and superior mechanical flexibility: A first-principles and Monte Carlo study , 2022 .

[50]  Youngjin Kim,et al.  Reliable high work-function molybdenum dioxide synthesis via template-effect-utilizing atomic layer deposition for next-generation electrode application , 2022, Journal of Materials Chemistry C.