Bayesian Time Series Models: Adaptive Markov chain Monte Carlo: theory and methods

In general, the transition probability P of the Markov chain depends on some tuning parameter θ defined on some space Θ which can be either finite dimensional or infinite dimensional. The success of the MCMC procedure depends crucially upon a proper choice of θ. To illustrate, consider the standard Metropolis-Hastings (MH) algorithm. For simplicity, we assume that π has a density also denoted by π with respect to the Lebesgue measure on X = R endowed with its Borel σ-field X . Given that the chain is at x, a candidate y is sampled from a proposal transition density q(x, ·) and is accepted with probability α(x, y) defined as

[1]  J. Hammersley SIMULATION AND THE MONTE CARLO METHOD , 1982 .

[2]  P. Hall,et al.  Martingale Limit Theory and its Application. , 1984 .

[3]  Pierre Priouret,et al.  Adaptive Algorithms and Stochastic Approximations , 1990, Applications of Mathematics.

[4]  C. Geyer Markov Chain Monte Carlo Maximum Likelihood , 1991 .

[5]  G. Parisi,et al.  Simulated tempering: a new Monte Carlo scheme , 1992, hep-lat/9205018.

[6]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[7]  R. Tweedie,et al.  Rates of convergence of the Hastings and Metropolis algorithms , 1996 .

[8]  R. Tweedie,et al.  Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms , 1996 .

[9]  A. Gelman,et al.  Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .

[10]  Un algorithme de Hastings-Metropolis avec apprentissage séquentiel , 1999 .

[11]  Heikki Haario,et al.  Adaptive proposal distribution for random walk Metropolis algorithm , 1999, Comput. Stat..

[12]  S. F. Jarner,et al.  Geometric ergodicity of Metropolis algorithms , 2000 .

[13]  É. Moulines,et al.  V-Subgeometric ergodicity for a Hastings–Metropolis algorithm , 2000 .

[14]  C. Robert,et al.  Controlled MCMC for Optimal Sampling , 2001 .

[15]  J. Rosenthal,et al.  Optimal scaling for various Metropolis-Hastings algorithms , 2001 .

[16]  Algorithmes de Hastings–Metropolis en interaction , 2001 .

[17]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[18]  D. Chauveau,et al.  Improving Convergence of the Hastings–Metropolis Algorithm with an Adaptive Proposal , 2002 .

[19]  R. Douc,et al.  Quantitative bounds for geometric convergence rates of Markov Chains , 2002 .

[20]  Gersende Fort,et al.  Convergence of the Monte Carlo expectation maximization for curved exponential families , 2003 .

[21]  G. Fort,et al.  On the geometric ergodicity of hybrid samplers , 2003, Journal of Applied Probability.

[22]  H. Kushner,et al.  Stochastic Approximation and Recursive Algorithms and Applications , 2003 .

[23]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[24]  Heikki Haario,et al.  Componentwise adaptation for high dimensional MCMC , 2005, Comput. Stat..

[25]  Eric Moulines,et al.  Stability of Stochastic Approximation under Verifiable Conditions , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[26]  J. Rosenthal,et al.  On adaptive Markov chain Monte Carlo algorithms , 2005 .

[27]  C. Andrieu,et al.  On the ergodicity properties of some adaptive MCMC algorithms , 2006, math/0610317.

[28]  S. Kou,et al.  Equi-energy sampler with applications in statistical inference and statistical mechanics , 2005, math/0507080.

[29]  Eric Moulines,et al.  On‐line expectation–maximization algorithm for latent data models , 2007, ArXiv.

[30]  Chao Yang,et al.  On The Weak Law Of Large Numbers For Unbounded Functionals For Adaptive MCMC , 2007 .

[31]  J. Rosenthal,et al.  Coupling and Ergodicity of Adaptive Markov Chain Monte Carlo Algorithms , 2007, Journal of Applied Probability.

[32]  Jeffrey S. Rosenthal,et al.  AMCMC: An R interface for adaptive MCMC , 2007, Comput. Stat. Data Anal..

[33]  Ajay Jasra,et al.  On population-based simulation for static inference , 2007, Stat. Comput..

[34]  Anne-Mette K. Hein,et al.  BGX: a Bioconductor package for the Bayesian integrated analysis of Affymetrix GeneChips , 2007, BMC Bioinformatics.

[35]  Christophe Andrieu,et al.  A tutorial on adaptive MCMC , 2008, Stat. Comput..

[36]  George Y. Sofronov,et al.  Adaptive independence samplers , 2008, Stat. Comput..

[37]  P. Giordani,et al.  Adaptive Independent Metropolis–Hastings by Fast Estimation of Mixtures of Normals , 2008, 0801.1864.

[38]  Chao Yang,et al.  Learn From Thy Neighbor: Parallel-Chain Adaptive MCMC , 2008 .

[39]  G. Fort,et al.  Limit theorems for some adaptive MCMC algorithms with subgeometric kernels , 2008, 0807.2952.

[40]  J. Rosenthal,et al.  Department of , 1993 .

[41]  Gareth O. Roberts,et al.  Examples of Adaptive MCMC , 2009 .

[42]  Yves F. Atchad'e A cautionary tale on the efficiency of some adaptive monte carlo schemes , 2009, 0901.1378.

[43]  P. Moral,et al.  On nonlinear Markov chain Monte Carlo via Self-interacting approximations. , 2011 .

[44]  Jeffrey S. Rosenthal,et al.  Optimal Proposal Distributions and Adaptive MCMC , 2011 .