Bayesian Time Series Models: Adaptive Markov chain Monte Carlo: theory and methods
暂无分享,去创建一个
[1] J. Hammersley. SIMULATION AND THE MONTE CARLO METHOD , 1982 .
[2] P. Hall,et al. Martingale Limit Theory and its Application. , 1984 .
[3] Pierre Priouret,et al. Adaptive Algorithms and Stochastic Approximations , 1990, Applications of Mathematics.
[4] C. Geyer. Markov Chain Monte Carlo Maximum Likelihood , 1991 .
[5] G. Parisi,et al. Simulated tempering: a new Monte Carlo scheme , 1992, hep-lat/9205018.
[6] Richard L. Tweedie,et al. Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.
[7] R. Tweedie,et al. Rates of convergence of the Hastings and Metropolis algorithms , 1996 .
[8] R. Tweedie,et al. Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms , 1996 .
[9] A. Gelman,et al. Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .
[10] Un algorithme de Hastings-Metropolis avec apprentissage séquentiel , 1999 .
[11] Heikki Haario,et al. Adaptive proposal distribution for random walk Metropolis algorithm , 1999, Comput. Stat..
[12] S. F. Jarner,et al. Geometric ergodicity of Metropolis algorithms , 2000 .
[13] É. Moulines,et al. V-Subgeometric ergodicity for a Hastings–Metropolis algorithm , 2000 .
[14] C. Robert,et al. Controlled MCMC for Optimal Sampling , 2001 .
[15] J. Rosenthal,et al. Optimal scaling for various Metropolis-Hastings algorithms , 2001 .
[16] Algorithmes de Hastings–Metropolis en interaction , 2001 .
[17] H. Haario,et al. An adaptive Metropolis algorithm , 2001 .
[18] D. Chauveau,et al. Improving Convergence of the Hastings–Metropolis Algorithm with an Adaptive Proposal , 2002 .
[19] R. Douc,et al. Quantitative bounds for geometric convergence rates of Markov Chains , 2002 .
[20] Gersende Fort,et al. Convergence of the Monte Carlo expectation maximization for curved exponential families , 2003 .
[21] G. Fort,et al. On the geometric ergodicity of hybrid samplers , 2003, Journal of Applied Probability.
[22] H. Kushner,et al. Stochastic Approximation and Recursive Algorithms and Applications , 2003 .
[23] Christian P. Robert,et al. Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.
[24] Heikki Haario,et al. Componentwise adaptation for high dimensional MCMC , 2005, Comput. Stat..
[25] Eric Moulines,et al. Stability of Stochastic Approximation under Verifiable Conditions , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.
[26] J. Rosenthal,et al. On adaptive Markov chain Monte Carlo algorithms , 2005 .
[27] C. Andrieu,et al. On the ergodicity properties of some adaptive MCMC algorithms , 2006, math/0610317.
[28] S. Kou,et al. Equi-energy sampler with applications in statistical inference and statistical mechanics , 2005, math/0507080.
[29] Eric Moulines,et al. On‐line expectation–maximization algorithm for latent data models , 2007, ArXiv.
[30] Chao Yang,et al. On The Weak Law Of Large Numbers For Unbounded Functionals For Adaptive MCMC , 2007 .
[31] J. Rosenthal,et al. Coupling and Ergodicity of Adaptive Markov Chain Monte Carlo Algorithms , 2007, Journal of Applied Probability.
[32] Jeffrey S. Rosenthal,et al. AMCMC: An R interface for adaptive MCMC , 2007, Comput. Stat. Data Anal..
[33] Ajay Jasra,et al. On population-based simulation for static inference , 2007, Stat. Comput..
[34] Anne-Mette K. Hein,et al. BGX: a Bioconductor package for the Bayesian integrated analysis of Affymetrix GeneChips , 2007, BMC Bioinformatics.
[35] Christophe Andrieu,et al. A tutorial on adaptive MCMC , 2008, Stat. Comput..
[36] George Y. Sofronov,et al. Adaptive independence samplers , 2008, Stat. Comput..
[37] P. Giordani,et al. Adaptive Independent Metropolis–Hastings by Fast Estimation of Mixtures of Normals , 2008, 0801.1864.
[38] Chao Yang,et al. Learn From Thy Neighbor: Parallel-Chain Adaptive MCMC , 2008 .
[39] G. Fort,et al. Limit theorems for some adaptive MCMC algorithms with subgeometric kernels , 2008, 0807.2952.
[40] J. Rosenthal,et al. Department of , 1993 .
[41] Gareth O. Roberts,et al. Examples of Adaptive MCMC , 2009 .
[42] Yves F. Atchad'e. A cautionary tale on the efficiency of some adaptive monte carlo schemes , 2009, 0901.1378.
[43] P. Moral,et al. On nonlinear Markov chain Monte Carlo via Self-interacting approximations. , 2011 .
[44] Jeffrey S. Rosenthal,et al. Optimal Proposal Distributions and Adaptive MCMC , 2011 .