Extending the Applicability of POMDP Solutions to Robotic Tasks

Partially observable Markov decision processes (POMDPs) are used in many robotic task classes from soccer to household chores. Determining an approximately optimal action policy for POMDPs is PSPACE-complete, and the exponential growth of computation time prohibits solving large tasks. This paper describes two techniques to extend the range of robotic tasks that can be solved using a POMDP. Our first technique reduces the motion constraints of a robot and, then, uses state-of-the-art robotic motion planning techniques to respect the true motion constraints at runtime. We then propose a novel task decomposition that can be applied to some indoor robotic tasks. This decomposition transforms a long time horizon task into a set of shorter tasks. We empirically demonstrate the performance gain provided by these two techniques through simulated execution in a variety of environments. Comparing a direct formulation of a POMDP to solving our proposed reductions, we conclude that the techniques proposed in this paper can provide significant enhancement to current POMDP solution techniques, extending the POMDP instances that can be solved to include large continuous-state robotic tasks.

[1]  Edward J. Sondik,et al.  The Optimal Control of Partially Observable Markov Processes over a Finite Horizon , 1973, Oper. Res..

[2]  Edward J. Sondik,et al.  The Optimal Control of Partially Observable Markov Processes over the Infinite Horizon: Discounted Costs , 1978, Oper. Res..

[3]  John N. Tsitsiklis,et al.  The Complexity of Markov Decision Processes , 1987, Math. Oper. Res..

[4]  L. Shepp,et al.  OPTIMAL PATHS FOR A CAR THAT GOES BOTH FORWARDS AND BACKWARDS , 1990 .

[5]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[6]  Steven M. LaValle,et al.  Randomized Kinodynamic Planning , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[7]  Joelle Pineau,et al.  Towards robotic assistants in nursing homes: Challenges and results , 2003, Robotics Auton. Syst..

[8]  Leslie Pack Kaelbling,et al.  Representing hierarchical POMDPs as DBNs for multi-scale robot localization , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[9]  Joelle Pineau,et al.  A Hierarchical Approach to POMDP Planning and Execution , 2004 .

[10]  Anthony Stentz,et al.  Field D*: An Interpolation-Based Path Planner and Replanner , 2005, ISRR.

[11]  Reid G. Simmons,et al.  Point-Based POMDP Algorithms: Improved Analysis and Implementation , 2005, UAI.

[12]  Panos E. Trahanias,et al.  Real-time hierarchical POMDPs for autonomous robot navigation , 2007, Robotics Auton. Syst..

[13]  Leslie Pack Kaelbling,et al.  Grasping POMDPs , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[14]  Joelle Pineau,et al.  Online Planning Algorithms for POMDPs , 2008, J. Artif. Intell. Res..

[15]  David Hsu,et al.  SARSOP: Efficient Point-Based POMDP Planning by Approximating Optimally Reachable Belief Spaces , 2008, Robotics: Science and Systems.

[16]  Thierry Siméon,et al.  Transition-based RRT for path planning in continuous cost spaces , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[17]  David Hsu,et al.  Motion planning under uncertainty for robotic tasks with long time horizons , 2010, Int. J. Robotics Res..

[18]  David Hsu,et al.  Monte Carlo Value Iteration for Continuous-State POMDPs , 2010, WAFR.

[19]  Joelle Pineau,et al.  Variable resolution decomposition for robotic navigation under a POMDP framework , 2010, 2010 IEEE International Conference on Robotics and Automation.

[20]  Joel Veness,et al.  Monte-Carlo Planning in Large POMDPs , 2010, NIPS.

[21]  David Hsu,et al.  Monte Carlo Value Iteration with Macro-Actions , 2011, NIPS.

[22]  Seth Hutchinson,et al.  Minimum uncertainty robot navigation using information-guided POMDP planning , 2011, 2011 IEEE International Conference on Robotics and Automation.

[23]  Edwin Olson,et al.  AprilTag: A robust and flexible visual fiducial system , 2011, 2011 IEEE International Conference on Robotics and Automation.

[24]  Ron Alterovitz,et al.  Efficient Approximate Value Iteration for Continuous Gaussian POMDPs , 2012, AAAI.

[25]  Nicholas M. Patrikalakis,et al.  Global motion planning under uncertain motion, sensing, and environment map , 2011, Auton. Robots.

[26]  Nicholas M. Patrikalakis,et al.  Point-Based Policy Transformation: Adapting Policy to Changing POMDP Models , 2012, WAFR.

[27]  R. Dearden,et al.  Improving Point-Based POMDP Policies at Run-Time , 2012 .

[28]  Lydia E. Kavraki,et al.  The Open Motion Planning Library , 2012, IEEE Robotics & Automation Magazine.

[29]  Mohan Sridharan,et al.  Active visual sensing and collaboration on mobile robots using hierarchical POMDPs , 2012, AAMAS.

[30]  Lydia E. Kavraki,et al.  Combining a POMDP Abstraction with Replanning to Solve Complex, Position-Dependent Sensing Tasks , 2013, AAAI Fall Symposia.

[31]  Hadas Kress-Gazit,et al.  Iterative temporal motion planning for hybrid systems in partially unknown environments , 2013, HSCC '13.

[32]  David Hsu,et al.  DESPOT: Online POMDP Planning with Regularization , 2013, NIPS.

[33]  Lydia E. Kavraki,et al.  Automated model approximation for robotic navigation with POMDPs , 2013, 2013 IEEE International Conference on Robotics and Automation.

[34]  Leslie Pack Kaelbling,et al.  Integrated task and motion planning in belief space , 2013, Int. J. Robotics Res..

[35]  David Hsu,et al.  Planning how to learn , 2013, 2013 IEEE International Conference on Robotics and Automation.

[36]  Young J. Kim,et al.  GPU-based motion planning under uncertainties using POMDP , 2013, 2013 IEEE International Conference on Robotics and Automation.

[37]  Nancy M. Amato,et al.  FIRM: Sampling-based feedback motion-planning under motion uncertainty and imperfect measurements , 2014, Int. J. Robotics Res..

[38]  Joni Pajarinen,et al.  Robotic manipulation of multiple objects as a POMDP , 2014, Artif. Intell..