Complexity of Propositional Logics in Team Semantics

We classify the computational complexity of the satisfiability, validity and model-checking problems for propositional independence, inclusion, and team logic. Our main result shows that the satisfiability and validity problems for propositional team logic are complete for alternating exponential-time with polynomially many alternations.

[1]  Sebastian Link,et al.  On the finite and general implication problems of independence atoms and keys , 2016, J. Comput. Syst. Sci..

[2]  Fan Yang,et al.  Propositional logics of dependence , 2014, Ann. Pure Appl. Log..

[3]  Martin Lück,et al.  Axiomatizations for Propositional and Modal Team Logic , 2016, CSL.

[4]  Pekka Orponen,et al.  Complexity Classes of Alternating Machines with Oracles , 1983, ICALP.

[5]  Jukka Corander,et al.  A Logical Approach to Context-Specific Independence , 2016, WoLLIC.

[6]  Jonni Virtema Complexity of validity for propositional dependence logics , 2017, Inf. Comput..

[7]  Erich Grädel,et al.  Dependence and Independence , 2012, Stud Logica.

[8]  Julian-Steffen Müller,et al.  Modal Independence Logic , 2014, Advances in Modal Logic.

[9]  Samuel R. Buss,et al.  The Boolean formula value problem is in ALOGTIME , 1987, STOC.

[10]  Pietro Galliani,et al.  Inclusion and exclusion dependencies in team semantics - On some logics of imperfect information , 2011, Ann. Pure Appl. Log..

[11]  Julian-Steffen Müller Satisfiability and model checking in team based logics , 2014 .

[12]  Julian-Steffen Müller,et al.  A Van Benthem Theorem for Modal Team Semantics , 2015, CSL.

[13]  Johannes Ebbing,et al.  Complexity of Model Checking for Modal Dependence Logic , 2011, SOFSEM.

[14]  Martin Lück,et al.  Complete Problems of Propositional Logic for the Exponential Hierarchy , 2016, ArXiv.

[15]  Erich Grädel Jouko Väänänen Dependence and Independence , 2012 .

[16]  Lauri Hella,et al.  Modal Inclusion Logic: Being Lax is Simpler than Being Strict , 2015, MFCS.

[17]  Samson Abramsky,et al.  Relational Hidden Variables and Non-Locality , 2010, Studia Logica.

[18]  Jonni Virtema,et al.  Complexity of Propositional Independence and Inclusion Logic , 2015, MFCS.

[19]  Lauri Hella,et al.  Model Checking and Validity in Propositional and Modal Inclusion Logics , 2017, MFCS.

[20]  Jonni Virtema,et al.  Axiomatizing Propositional Dependence Logics , 2015, CSL.

[21]  Fan Yang,et al.  Dependence and Independence in Social Choice: Arrow's Theorem , 2016, Dependence Logic.

[22]  Heribert Vollmer,et al.  Complexity Results for Modal Dependence Logic , 2010, Studia Logica.

[23]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[24]  Heribert Vollmer,et al.  Expressivity and Complexity of Dependence Logic , 2016, Dependence Logic.

[25]  Jouko Väänänen,et al.  From IF to BI , 2009, Synthese.

[26]  Miika Hannula,et al.  A finite axiomatization of conditional independence and inclusion dependencies , 2016, Inf. Comput..

[27]  Pietro Galliani,et al.  On Dependence Logic , 2013, Johan van Benthem on Logic and Information Dynamics.

[28]  Miika Hannula Validity and Entailment in Modal and Propositional Dependence Logics , 2017, CSL.

[29]  Gianluca Paolini,et al.  DEPENDENCE LOGIC IN PREGEOMETRIES AND ω-STABLE THEORIES , 2016, The Journal of Symbolic Logic.

[30]  Jonni Virtema,et al.  On Quantified Propositional Logics and the Exponential Time Hierarchy , 2016, GandALF.

[31]  Juha Kontinen,et al.  Team Logic and Second-Order Logic , 2011, Fundam. Informaticae.

[32]  Fan Yang,et al.  On Extensions and Variants of Dependence Logic : A study of intuitionistic connectives in the team semantics setting , 2014 .