Deterministic calibration and Nash equilibrium

We provide a natural learning process in which the joint frequency of empirical play converges into the set of convex combinations of Nash equilibria. In this process, all players rationally choose their actions using a public prediction made by a deterministic, weakly calibrated algorithm. Furthermore, the public predictions used in any given round of play are frequently close to some Nash equilibrium of the game.

[1]  J. Robinson AN ITERATIVE METHOD OF SOLVING A GAME , 1951, Classics in Game Theory.

[2]  O. H. Brownlee,et al.  ACTIVITY ANALYSIS OF PRODUCTION AND ALLOCATION , 1952 .

[3]  A. Dawid The Well-Calibrated Bayesian: Rejoinder , 1982 .

[4]  A. Dawid The Well-Calibrated Bayesian , 1982 .

[5]  A. Dawid Comment: The Impossibility of Inductive Inference , 1985 .

[6]  David Oakes,et al.  Self-Calibrating Priors Do Not Exist , 1985 .

[7]  Paul R. Milgrom,et al.  Adaptive and sophisticated learning in normal form games , 1991 .

[8]  Dean P. Foster,et al.  A Randomization Rule for Selecting Forecasts , 1993, Oper. Res..

[9]  E. Kalai,et al.  Rational Learning Leads to Nash Equilibrium , 1993 .

[10]  Dean P. Foster,et al.  Calibrated Learning and Correlated Equilibrium , 1997 .

[11]  S. Hart,et al.  A simple adaptive procedure leading to correlated equilibrium , 2000 .

[12]  D. Fudenberg,et al.  The Theory of Learning in Games , 1998 .

[13]  Y. Freund,et al.  Adaptive game playing using multiplicative weights , 1999 .

[14]  D. Fudenberg,et al.  Conditional Universal Consistency , 1999 .

[15]  E. Kalai,et al.  Calibrated Forecasting and Merging , 1999 .

[16]  D. Fudenberg,et al.  An Easier Way to Calibrate , 1999 .

[17]  Dean P. Foster,et al.  Regret in the On-Line Decision Problem , 1999 .

[18]  H P Young,et al.  On the impossibility of predicting the behavior of rational agents , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[19]  J. Hofbauer,et al.  Uncoupled Dynamics Do Not Lead to Nash Equilibrium , 2003 .

[20]  S. Hart,et al.  Uncoupled Dynamics Do Not Lead to Nash Equilibrium , 2003 .

[21]  H. Peyton Young,et al.  Learning, hypothesis testing, and Nash equilibrium , 2003, Games Econ. Behav..

[22]  Stochastic Uncoupled Dynamics and Nash Equilibrium , 2004 .

[23]  H. Peyton Young,et al.  Strategic Learning and Its Limits , 2004 .

[24]  Gürdal Arslan,et al.  Distributed convergence to Nash equilibria with local utility measurements , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[25]  Dean P. Foster,et al.  Regret Testing: A Simple Payo-Based Procedure for Learning Nash Equilibrium , 2005 .

[26]  Xiaotie Deng,et al.  Settling the Complexity of Two-Player Nash Equilibrium , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[27]  Paul W. Goldberg,et al.  The complexity of computing a Nash equilibrium , 2006, STOC '06.

[28]  Sham M. Kakade,et al.  Calibration via Regression , 2006, 2006 IEEE Information Theory Workshop - ITW '06 Punta del Este.

[29]  Andreu Mas-Colell,et al.  Stochastic Uncoupled Dynamics and Nash Equilibrium , 2004, Games Econ. Behav..

[30]  Shie Mannor,et al.  Online calibrated forecasts: Memory efficiency versus universality for learning in games , 2006, Machine Learning.