High-throughput determination of Hubbard U and Hund J values for transition metal oxides via the linear response formalism

DFT+ U provides a convenient, cost-effective correction for the self-interaction error (SIE) that arises when describing correlated electronic states using conventional approximate density functional theory (DFT). The success of a DFT+ U (+ J ) calculation hinges on the accurate determination of its Hubbard U and Hund’s J parameters, and the linear response (LR) methodology has proven to be computationally effective and accurate for calculating these parameters. This study provides a high-throughput computational analysis of the U and J values for transition metal d -electron states in a representative set of over 2000 magnetic transition metal oxides (TMOs), providing a frame of reference for researchers who use DFT+ U to study transition metal oxides. In order to perform this high-throughput study, an atomate workflow is developed for calculating U and J values automatically on massively parallel supercomputing architectures. To demonstrate an application of this workflow, the spin-canting magnetic structure and unit cell parameters of the multiferroic olivine LiNiPO 4 are calculated using the computed Hubbard U and Hund J values for Ni- d and O- p states, and are compared with experiment. Both the Ni- d U and J corrections have a strong effect on the Ni-moment canting angle. Additionally, including a O- p U value results in a significantly improved agreement between the computed lattice parameters and experiment.

[1]  G. Ceder,et al.  Approaches for handling high-dimensional cluster expansions of ionic systems , 2022, npj Computational Materials.

[2]  P. Littlewood,et al.  Exploring metastable states in UO2 using hybrid functionals and dynamical mean field theory , 2021, Journal of physics. Condensed matter : an Institute of Physics journal.

[3]  Anubhav Jain,et al.  A framework for quantifying uncertainty in DFT energy corrections , 2021, Scientific Reports.

[4]  H. Kulik,et al.  Molecular DFT+U: A Transferable, Low-Cost Approach to Eliminate Delocalization Error. , 2021, The journal of physical chemistry letters.

[5]  Noa Marom,et al.  Machine learning the Hubbard U parameter in DFT+U using Bayesian optimization , 2020, npj Computational Materials.

[6]  M. Karamad,et al.  Orbital Graph Convolutional Neural Network for Material Property Prediction , 2020, ArXiv.

[7]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[8]  David J. Singh,et al.  Shortcomings of meta-GGA functionals when describing magnetism , 2020, Physical Review B.

[9]  O. K. Orhan,et al.  First-principles Hubbard U and Hund's J corrected approximate density functional theory predicts an accurate fundamental gap in rutile and anatase TiO2 , 2020, Physical Review B.

[10]  Q. Cui,et al.  A systematic determination of hubbard U using the GBRV ultrasoft pseudopotential set , 2019 .

[11]  Á. Rubio,et al.  Parameter-free hybridlike functional based on an extended Hubbard model: DFT+U+V , 2019, 1911.10813.

[12]  Y. Son,et al.  Efficient First-Principles Approach with a Pseudohybrid Density Functional for Extended Hubbard Interactions , 2019, 1911.05967.

[13]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[14]  Joseph H. Montoya,et al.  High-throughput prediction of the ground-state collinear magnetic order of inorganic materials using Density Functional Theory , 2019, npj Computational Materials.

[15]  D. Vaknin,et al.  Dzyaloshinskii-Moriya interaction and the magnetic ground state in magnetoelectric LiCoPO4 , 2019, Physical Review B.

[16]  N. Marzari,et al.  Self-consistent site-dependent DFT+ U study of stoichiometric and defective SrMnO3 , 2018, Physical Review B.

[17]  S. Dudarev,et al.  Parametrization of LSDA+U for noncollinear magnetic configurations: Multipolar magnetism in UO2 , 2018, PHYSICAL REVIEW MATERIALS.

[18]  Kyle Chard,et al.  Matminer: An open source toolkit for materials data mining , 2018, Computational Materials Science.

[19]  N. Marzari,et al.  Hubbard parameters from density-functional perturbation theory , 2018, Physical Review B.

[20]  M. Payne,et al.  Role of spin in the calculation of Hubbard U and Hund's J parameters from first principles , 2018, Physical Review B.

[21]  A. Kirov,et al.  Crystallography online: Bilbao Crystallographic Server , 2017 .

[22]  D. Khomskii,et al.  Orbital physics in transition metal compounds: new trends , 2017, 1711.05409.

[23]  Matthew Horton,et al.  Atomate: A high-level interface to generate, execute, and analyze computational materials science workflows , 2017 .

[24]  Kiyoyuki Terakura,et al.  Machine learning reveals orbital interaction in materials , 2017, Science and technology of advanced materials.

[25]  H. Kulik,et al.  Communication: Recovering the flat-plane condition in electronic structure theory at semi-local DFT cost. , 2017, The Journal of chemical physics.

[26]  I. D. Marco,et al.  Combining electronic structure and many-body theory with large databases: A method for predicting the nature of 4 f states in Ce compounds , 2017, 1705.10674.

[27]  T. Yoon,et al.  Effects of Hubbard term correction on the structural parameters and electronic properties of wurtzite ZnO , 2017, 1703.02496.

[28]  Hong Jiang,et al.  The local projection in the density functional theory plus U approach: A critical assessment. , 2016, The Journal of chemical physics.

[29]  N. Skorodumova,et al.  Polaron mobility in oxygen-deficient and lithium doped tungsten trioxide , 2015, 1509.05951.

[30]  Adrienn Ruzsinszky,et al.  Strongly Constrained and Appropriately Normed Semilocal Density Functional. , 2015, Physical review letters.

[31]  M. Katsnelson,et al.  Exchange parameters of strongly correlated materials: extraction from spin-polarised density functional theory plus dynamical mean field theory , 2015, 1503.02864.

[32]  A. Oganov,et al.  Electronegativity and chemical hardness of elements under pressure , 2015, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Sergei L. Dudarev,et al.  Constrained density functional for noncollinear magnetism , 2015 .

[34]  X. Kuang,et al.  An ab initio study on the electronic and magnetic properties of MgO with intrinsic defects , 2014 .

[35]  Graeme W Watson,et al.  Occupation matrix control of d- and f-electron localisations using DFT + U. , 2014, Physical chemistry chemical physics : PCCP.

[36]  R. Armiento,et al.  Using the electron localization function to correct for confinement physics in semi-local density functional theory. , 2014, The Journal of chemical physics.

[37]  D. Lu,et al.  Rationalization of the Hubbard U parameter in CeO(x) from first principles: unveiling the role of local structure in screening. , 2014, The Journal of chemical physics.

[38]  Stefano de Gironcoli,et al.  Hubbard‐corrected DFT energy functionals: The LDA+U description of correlated systems , 2013, 1309.3355.

[39]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[40]  袁勋,et al.  Screened Coulomb interactions of localized electrons in transition metals and transition-metal oxides , 2012 .

[41]  Antoine Georges,et al.  Strong Correlations from Hund’s Coupling , 2012, 1207.3033.

[42]  A. Márquez,et al.  Communication: improving the density functional theory+U description of CeO2 by including the contribution of the O 2p electrons. , 2012, The Journal of chemical physics.

[43]  N. Marzari,et al.  Accurate potential energy surfaces with a DFT+U(R) approach. , 2011, The Journal of chemical physics.

[44]  Anubhav Jain,et al.  Formation enthalpies by mixing GGA and GGA + U calculations , 2011 .

[45]  Renata M. Wentzcovitch,et al.  First-principles study of electronic and structural properties of CuO , 2011, 1107.4399.

[46]  N. Spaldin,et al.  J dependence in the LSDA plus U treatment of noncollinear magnets , 2010 .

[47]  I. Brown,et al.  Recent Developments in the Methods and Applications of the Bond Valence Model , 2009, Chemical reviews.

[48]  Matteo Cococcioni,et al.  Extended DFT + U + V method with on-site and inter-site electronic interactions , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[49]  R. Albers,et al.  Hubbard-U band-structure methods , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[50]  Lars Nordstrom,et al.  Multipole decomposition of LDA+U energy and its application to actinide compounds , 2009, 0904.0742.

[51]  Weitao Yang,et al.  Insights into Current Limitations of Density Functional Theory , 2008, Science.

[52]  Emily A. Carter,et al.  Ab initio evaluation of Coulomb and exchange parameters for DFT+U calculations , 2007 .

[53]  G. Sawatzky,et al.  Magnetizing oxides by substituting nitrogen for oxygen. , 2007, Physical review letters.

[54]  N. Marzari,et al.  Density functional theory in transition-metal chemistry: a self-consistent Hubbard U approach. , 2006, Physical review letters.

[55]  Gerbrand Ceder,et al.  Oxidation energies of transition metal oxides within the GGA+U framework , 2006 .

[56]  P. Fuentealba,et al.  Hardness and softness kernels, and related indices in the spin polarized version of density functional theory , 2006 .

[57]  K. Held,et al.  Electronic structure calculations using dynamical mean field theory , 2005, cond-mat/0511293.

[58]  G. Ceder,et al.  Role of electronic structure in the susceptibility of metastable transition-metal oxide structures to transformation. , 2004, Chemical reviews.

[59]  G. Ceder,et al.  Towards more accurate First Principles prediction of redox potentials in transition-metal compounds with LDA+U , 2004, cond-mat/0406382.

[60]  Stefano de Gironcoli,et al.  Linear response approach to the calculation of the effective interaction parameters in the LDA + U method , 2004, cond-mat/0405160.

[61]  Terry L. Meek,et al.  Configuration Energies of the d-Block Elements , 2000 .

[62]  J. B. Mann,et al.  Configuration Energies of the Main Group Elements , 2000 .

[63]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[64]  E. Ethridge,et al.  Reformulation of the LDA+U method for a local orbital basis , 1996, cond-mat/9611225.

[65]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[66]  Robert G. Parr,et al.  Density Functional Theory of Electronic Structure , 1996 .

[67]  J. Zaanen,et al.  Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. , 1995, Physical review. B, Condensed matter.

[68]  P. Dederichs,et al.  Corrected atomic limit in the local-density approximation and the electronic structure of d impurities in Rb. , 1994, Physical review. B, Condensed matter.

[69]  A. Savin,et al.  Classification of chemical bonds based on topological analysis of electron localization functions , 1994, Nature.

[70]  G. Sawatzky,et al.  Density-functional theory and NiO photoemission spectra. , 1993, Physical review. B, Condensed matter.

[71]  V. Anisimov,et al.  Band theory and Mott insulators: Hubbard U instead of Stoner I. , 1991, Physical review. B, Condensed matter.

[72]  D. Vanderbilt,et al.  Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. , 1990, Physical review. B, Condensed matter.

[73]  Leland C. Allen,et al.  Electronegativity is the average one-electron energy of the valence-shell electrons in ground-state free atoms , 1989 .

[74]  Ralph G. Pearson,et al.  Absolute hardness: companion parameter to absolute electronegativity , 1983 .

[75]  D. Langreth,et al.  Beyond the local-density approximation in calculations of ground-state electronic properties , 1983 .

[76]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[77]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[78]  X. Ren 2 The Random Phase Approximation and its Applications to Real Materials , 2019 .

[79]  M. A. Flores,et al.  Accuracy of the HSE hybrid functional to describe many-electron interactions and charge localization in semiconductors , 2018 .

[80]  J. Schirmer Self-Energy and the Dyson Equation , 2018 .

[81]  E. Koch,et al.  Correlated Electrons: From Models to Materials Modeling and Simulation, Vol. 2 , 2012 .

[82]  M. Cococcioni The LDA + U Approach : A Simple Hubbard Correction for Correlated Ground States , 2012 .

[83]  Serge J. Belongie,et al.  Covariance Propagation for Guided Matching , 2006 .

[84]  K. P. Sinha,et al.  On the: Theory of Superexchange Interaction , 2004 .

[85]  Georg Kresse,et al.  The Vienna AB-Initio Simulation Program VASP: An Efficient and Versatile Tool for Studying the Structural, Dynamic, and Electronic Properties of Materials , 1997 .

[86]  A. B. Lidiard,et al.  Antiferromagnetism , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[87]  H. A. Kramers L'interaction Entre les Atomes Magnétogènes dans un Cristal Paramagnétique , 1934 .