Planning and control for microassembly of structures composed of stress-engineered MEMS microrobots

We present control strategies that implement planar microassembly using groups of stress-engineered MEMS microrobots (MicroStressBots) controlled through a single global control signal. The global control signal couples the motion of the devices, causing the system to be highly underactuated. In order for the robots to assemble into arbitrary planar shapes despite the high degree of underactuation, it is desirable that each robot be independently maneuverable (independently controllable). To achieve independent control, we fabricated robots that behave (move) differently from one another in response to the same global control signal. We harnessed this differentiation to develop assembly control strategies, where the assembly goal is a desired geometric shape that can be obtained by connecting the chassis of individual robots. We derived and experimentally tested assembly plans that command some of the robots to make progress toward the goal, while other robots are constrained to remain in small circular trajectories (closed-loop orbits) until it is their turn to move into the goal shape. Our control strategies were tested on systems of fabricated MicroStressBots. The robots are 240-280 μm × 60 μm × 7-20 μm in size and move simultaneously within a single operating environment. We demonstrated the feasibility of our control scheme by accurately assembling five different types of planar microstructures.

[1]  Enrico Pagello,et al.  Cooperative behaviors in multi-robot systems through implicit communication , 1999, Robotics Auton. Syst..

[2]  K.-F. Bohringer,et al.  A theory of manipulation and control for microfabricated actuator arrays , 1994, Proceedings IEEE Micro Electro Mechanical Systems An Investigation of Micro Structures, Sensors, Actuators, Machines and Robotic Systems.

[3]  Jr-Shin Li Control of Inhomogeneous Ensembles , 2006 .

[4]  N. Khaneja,et al.  Control of inhomogeneous quantum ensembles , 2006 .

[5]  Victor M. Bright,et al.  Prototype microrobots for micro-positioning and micro-unmanned vehicles , 2000 .

[6]  Bruce Randall Donald Planning Multi-Step Error Detection and Recovery Strategies , 1990, Int. J. Robotics Res..

[7]  Dominic R. Frutiger,et al.  Magmites - wireless resonant magnetic microrobots , 2008, 2008 IEEE International Conference on Robotics and Automation.

[8]  Metin Sitti,et al.  Assembly and disassembly of magnetic mobile micro-robots towards deterministic 2-D reconfigurable micro-systems , 2011, 2011 IEEE International Conference on Robotics and Automation.

[9]  Tien,et al.  Forming electrical networks in three dimensions by self-assembly , 2000, Science.

[10]  Robert Fitch,et al.  Distributed control for unit-compressible robots: goal-recognition, locomotion, and splitting , 2002 .

[11]  Bruce Randall Donald,et al.  Moving furniture with teams of autonomous robots , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[12]  Dominic R. Frutiger,et al.  Small, Fast, and Under Control: Wireless Resonant Magnetic Micro-agents , 2010, Int. J. Robotics Res..

[13]  John W. Suh,et al.  CMOS integrated ciliary actuator array as a general-purpose micromanipulation tool for small objects , 1999 .

[14]  K. Pister,et al.  Solar powered 10 mg silicon robot , 2003, The Sixteenth Annual International Conference on Micro Electro Mechanical Systems, 2003. MEMS-03 Kyoto. IEEE.

[15]  Alcherio Martinoli,et al.  Modeling Swarm Robotic Systems: a Case Study in Collaborative Distributed Manipulation , 2004, Int. J. Robotics Res..

[16]  Sarah Bergbreiter,et al.  First leaps toward jumping microrobots , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[17]  B.R. Donald,et al.  Planar Microassembly by Parallel Actuation of MEMS Microrobots , 2008, Journal of Microelectromechanical Systems.

[18]  Timothy Bretl,et al.  Minimum-Time Optimal Control of Many Robots that Move in the Same Direction at Different Speeds , 2012, IEEE Transactions on Robotics.

[19]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[20]  Roger D. Quinn,et al.  Toward a science of flexible feeding , 1999, 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (Cat. No.99TH8399).

[21]  R. Saini,et al.  Assembly technology across multiple length scales from the micro-scale to the nano-scale , 2004, 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest.

[22]  L. Dubins On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal Positions and Tangents , 1957 .

[23]  Randy H. Katz,et al.  Next century challenges: mobile networking for “Smart Dust” , 1999, MobiCom.

[24]  Metin Sitti,et al.  Two-Dimensional Autonomous Microparticle Manipulation Strategies for Magnetic Microrobots in Fluidic Environments , 2012, IEEE Transactions on Robotics.

[25]  H. Nathanson,et al.  The resonant gate transistor , 1967 .

[26]  Bruce Randall Donald,et al.  Turning-rate Selective Control : A New Method for Independent Control of Stress-engineered MEMS Microrobots , 2012, Robotics: Science and Systems.

[27]  I. Shimoyama,et al.  Three-dimensional micro-self-assembly using hydrophobic interaction controlled by self-assembled monolayers , 2004, Journal of Microelectromechanical Systems.

[28]  Bruce Randall Donald,et al.  Guest editor's foreword special issue on computational robotics: The geometric theory of manipulation, planning, and control , 1993, Algorithmica.

[29]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[30]  Metin Sitti,et al.  Modeling and Experimental Characterization of an Untethered Magnetic Micro-Robot , 2009, Int. J. Robotics Res..

[31]  Paolo Dario,et al.  Microactuators for microrobots: a critical survey , 1992 .

[32]  B.R. Donald,et al.  An untethered, electrostatic, globally controllable MEMS micro-robot , 2006, Journal of Microelectromechanical Systems.

[33]  Antonio Bicchi,et al.  Decentralized Cooperative Policy for Conflict Resolution in Multivehicle Systems , 2007, IEEE Transactions on Robotics.

[34]  Jie Lin,et al.  Coordination of groups of mobile autonomous agents using nearest neighbor rules , 2003, IEEE Trans. Autom. Control..

[35]  Bruce Randall Donald,et al.  Simultaneous Control of Multiple MEMS Microrobots , 2008, WAFR.

[36]  Bruce Randall Donald,et al.  Power delivery and locomotion of untethered micro-actuators , 2003, The Sixteenth Annual International Conference on Micro Electro Mechanical Systems, 2003. MEMS-03 Kyoto. IEEE.

[37]  Craig D. McGray,et al.  Power delivery and locomotion of untethered microactuators , 2003 .

[38]  Russell H. Taylor,et al.  Automatic Synthesis of Fine-Motion Strategies for Robots , 1984 .

[39]  M.C. Wu,et al.  Dynamic Cell and Microparticle Control via Optoelectronic Tweezers , 2007, Journal of Microelectromechanical Systems.

[40]  Raymond H. Byrne,et al.  Miniature mobile robots for plume tracking and source localization research , 2001 .

[41]  Bradley J. Nelson,et al.  Modeling and Control of Untethered Biomicrorobots in a Fluidic Environment Using Electromagnetic Fields , 2006, Int. J. Robotics Res..

[42]  Daniela Rus,et al.  Locomotion versatility through self-reconfiguration , 1999, Robotics Auton. Syst..

[43]  脇元 修一,et al.  IEEE International Conference on Robotics and Automation (ICRA) におけるフルードパワー技術の研究動向 , 2011 .

[44]  Nikolai Dechev,et al.  Tether and joint design for microcomponents used in microassembly of 3D microstructures , 2004, SPIE MOEMS-MEMS.

[45]  Bruce Randall Donald,et al.  Programmable Force Fields for Distributed Manipulation, with Applications to MEMS Actuator Arrays and Vibratory Parts Feeders , 1999, Int. J. Robotics Res..

[46]  Paolo Dario,et al.  Modeling and Experiments on a Legged Microrobot Locomoting in a Tubular, Compliant and Slippery Environment , 2006 .

[47]  Timothy Bretl Control of Many Agents Using Few Instructions , 2007, Robotics: Science and Systems.

[48]  Eric Klavins Directed Self-Assembly Using Graph Grammars , 2004 .

[49]  Jianghao Li,et al.  An omni-directional mobile millimeter-sized microrobot with 3-mm electromagnetic micromotors for a micro-factory , 2007, Adv. Robotics.

[50]  Bruce Randall Donald,et al.  Error Detection and Recovery in Robotics , 1989, Lecture Notes in Computer Science.

[51]  Mark H. Overmars,et al.  Geometric algorithms for trap design , 1999, SCG '99.

[52]  Dan O. Popa,et al.  Micro and Mesoscale Robotic Assembly , 2004 .

[53]  Bruce Randall Donald,et al.  Algorithms for Sensorless Manipulation Using a Vibrating Surface , 2000, Algorithmica.

[54]  John S. Bay,et al.  Toward the development of a material transport system using swarms of ant-like robots , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[55]  Bruce Randall Donald,et al.  Information Invariants for Distributed Manipulation , 1995, Int. J. Robotics Res..

[56]  Arthur C. Sanderson,et al.  AND/OR graph representation of assembly plans , 1986, IEEE Trans. Robotics Autom..

[57]  Bruce Randall Donald,et al.  The complexity of planar compliant motion planning under uncertainty , 1988, SCG '88.

[58]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[59]  Ahmad A. Masoud,et al.  Kinodynamic Motion Planning , 2010, IEEE Robotics & Automation Magazine.

[60]  Metin Sitti,et al.  An untethered magnetically actuated micro-robot capable of motion on arbitrary surfaces , 2008, 2008 IEEE International Conference on Robotics and Automation.

[61]  Harry E. Stephanou,et al.  Micro and Meso Scale Robotic Assembly , 2004 .

[62]  Jr-Shin Li,et al.  Noncommuting vector fields, polynomial approximations and control of inhomogeneous quantum ensembles , 2005 .

[63]  Terunobu Akiyama,et al.  Controlled stepwise motion in polysilicon microstructures , 1993 .

[64]  Metin Sitti,et al.  Control methodologies for a heterogeneous group of untethered magnetic micro-robots , 2011, Int. J. Robotics Res..

[65]  G. Whitesides,et al.  Self-Assembly at All Scales , 2002, Science.

[66]  Xiaorong Xiong,et al.  Towards optimal designs for self-alignment in surface tension driven micro-assembly , 2004, 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest.

[67]  N. Seeman Nucleic Acid Nanostructures and Topology. , 1998, Angewandte Chemie.

[68]  Paul W. K. Rothemund,et al.  Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature 440, 297-302 , 2006 .

[69]  Bruce Randall Donald The complexity of planar compliant motion planning under uncertainty , 1988, SCG '88.

[70]  Babak A. Parviz,et al.  Molten-Alloy Driven Self-Assembly for Nano and Micro Scale System Integration , 2006 .

[71]  Zack J. Butler,et al.  Self-reconfiguring robots , 2002, CACM.

[72]  P W Rothemund,et al.  Using lateral capillary forces to compute by self-assembly , 2000, Proc. Natl. Acad. Sci. USA.