On the unique ergodicity for a class of 2 dimensional stochastic wave equations

We study the global-in-time dynamics for a stochastic semilinear wave equation with cubic defocusing nonlinearity and additive noise, posed on the 2-dimensional torus. The noise is taken to be slightly more regular than space-time white noise. In this setting, we show existence and uniqueness of an invariant measure for the Markov semigroup generated by the flow over an appropriately chosen Banach space. This extends a result of the second author [24] to a situation where the invariant measure is not explicitly known.

[1]  H. Weber,et al.  THE DYNAMIC Φ 43 MODEL COMES DOWN FROM INFINITY , 2017 .

[2]  V. Barbu,et al.  The Stochastic Nonlinear Damped Wave Equation , 2002 .

[3]  Jonathan C. Mattingly,et al.  Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing , 2004, math/0406087.

[4]  H. Weber,et al.  GLOBAL WELL-POSEDNESS OF THE DYNAMIC 4 MODEL IN THE PLANE , 2015 .

[5]  Hendrik Weber,et al.  Spectral gap for the stochastic quantization equation on the 2-dimensional torus , 2016, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.

[6]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[7]  G. Prato,et al.  Two-Dimensional Navier--Stokes Equations Driven by a Space--Time White Noise , 2002 .

[8]  T. Kurtz,et al.  Stochastic equations in infinite dimensions , 2006 .

[9]  H. McKean,et al.  Statistical mechanics of nonlinear wave equations , 1994 .

[10]  Jonathan C. Mattingly,et al.  The strong Feller property for singular stochastic PDEs , 2016, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.

[11]  N. Tzvetkov,et al.  Random data Cauchy theory for supercritical wave equations II: a global existence result , 2007, 0707.1448.

[12]  Z. Brzeźniak,et al.  Invariant measures for stochastic nonlinear beam and wave equations , 2016 .

[13]  M. Gubinelli,et al.  Renormalization of the two-dimensional stochastic nonlinear wave equations , 2017, Transactions of the American Mathematical Society.

[14]  Terence Tao,et al.  A Refined Global Well-Posedness Result for Schrödinger Equations with Derivative , 2001, SIAM J. Math. Anal..

[15]  M. Hofmanová,et al.  PR ] 3 0 A pr 2 01 8 Global solutions to elliptic and parabolic Φ 4 models in Euclidean space , 2018 .

[16]  Jonathan C. Mattingly,et al.  Asymptotic coupling and a general form of Harris’ theorem with applications to stochastic delay equations , 2009, 0902.4495.

[17]  L. Tolomeo Global well posedness of the two-dimensional stochastic nonlinear wave equation on an unbounded domain , 2019, The Annals of Probability.

[18]  J. Bourgain Periodic nonlinear Schrödinger equation and invariant measures , 1994 .

[19]  H. McKean Erratum: "Statistical mechanics of nonlinear wave equations. IV. Cubic Schrödinger" , 1995 .

[20]  Probabilistic global well-posedness of the energy-critical defocusing quintic nonlinear wave equation on ^3 , 2015 .

[21]  G. Parisi,et al.  PERTURBATION-THEORY WITHOUT GAUGE FIXING , 1980 .

[22]  L. Tolomeo Unique Ergodicity for a Class of Stochastic Hyperbolic Equations with Additive Space-Time White Noise , 2018, 1811.06294.