Dynamics and M-Stability of Legged Robots

This article presents a theoretical approach for modeling and controlling the stability of legged robots. The new proposed concept is two-fold: (a) the definition of the (m-d)-stability and (b) the definition of the Virtual Generalized Stabilizer. These concepts are developed throughout a theoretical and general approach to the dynamics of legged robots. Numerical results are analyzed through the simulated behavior of a biped robot recovering a statically stable state under two conditions: an unstable initial posture and an impulsive external force.

[1]  Chee-Meng Chew,et al.  A general control architecture for dynamic bipedal walking , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[2]  Kikuo Fujimura,et al.  The intelligent ASIMO: system overview and integration , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[3]  R. McGhee,et al.  On the stability properties of quadruped creeping gaits , 1968 .

[4]  Oussama Khatib,et al.  A unified approach for motion and force control of robot manipulators: The operational space formulation , 1987, IEEE J. Robotics Autom..

[5]  Kazuhito Yokoi,et al.  The 3D linear inverted pendulum mode: a simple modeling for a biped walking pattern generation , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[6]  Katsuhisa Furuta,et al.  Passive velocity field control of biped walking robot , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[7]  Jean-Guy Fontaine,et al.  Unified approach for m-stability analysis and control of legged robots , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[8]  Milos Zefran,et al.  Optimal control of systems with unilateral constraints , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[9]  Atsuo Takanishi,et al.  Development of a bipedal humanoid robot-control method of whole body cooperative dynamic biped walking , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[10]  Changjiu Zhou,et al.  Prescribed synergy method-based hybrid intelligent gait synthesis for biped robot , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[11]  David E. Orin,et al.  Efficient Dynamic Simulation of a Quadruped Using a Decoupled Tree-Structure Approach , 1991, Int. J. Robotics Res..

[12]  Pierre-Brice Wieber,et al.  Dynamic transition simulation of a walking anthropomorphic robot , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[13]  T. Takenaka,et al.  The development of Honda humanoid robot , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[14]  Jérôme Forêt Analyse théorique du comportement dynamique de systèmes marcheurs pour l'élaboration de stratégies de contrôle , 2003 .

[15]  David E. Orin,et al.  Interactive control of a six-legged vehicle with optimization of both stability and energy / , 1976 .

[16]  Friedrich Pfeiffer,et al.  A biped robot that jogs , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[17]  Robert B. McGhee,et al.  Adaptive Locomotion of a Multilegged Robot over Rough Terrain , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[18]  Elena García Armada,et al.  A classification of stability margins for walking robots , 2002 .

[19]  Shuuji Kajita,et al.  Adaptive Gait Control of a Biped Robot Based on Realtime Sensing of the Ground Profile , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[20]  Jerry E. Pratt,et al.  Virtual model control of a bipedal walking robot , 1997, Proceedings of International Conference on Robotics and Automation.

[21]  Ambarish Goswami,et al.  Postural Stability of Biped Robots and the Foot-Rotation Indicator (FRI) Point , 1999, Int. J. Robotics Res..

[22]  René Zapata,et al.  Modeling and control of biped robot dynamics , 1999, Robotica.