Quantum Information Processing with Finite Resources - Mathematical Foundations

This book provides the reader with the mathematical framework required to fully explore the potential of small quantum information processing devices. As decoherence will continue to limit their size, it is essential to master the conceptual tools which make such investigations possible. A strong emphasis is given to information measures that are essential for the study of devices of finite size, including Rnyi entropies and smooth entropies. The presentation is self-contained and includes rigorous and concise proofs of the most important properties of these measures. The first chapters will introduce the formalism of quantum mechanics, with particular emphasis on norms and metrics for quantum states. This is necessary to explore quantum generalizations of Rnyi divergence and conditional entropy, information measures that lie at the core of information theory. The smooth entropy framework is discussed next and provides a natural means to lift many arguments from information theory to the quantum setting. Finally selected applications of the theory to statistics and cryptography are discussed. The book is aimed at graduate students in Physics and Information Theory. Mathematical fluency is necessary, but no prior knowledge of quantum theory is required.

[1]  M. Tomamichel A framework for non-asymptotic quantum information theory , 2012, 1203.2142.

[2]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[3]  Naresh Sharma,et al.  Fundamental bound on the reliability of quantum information transmission , 2012, Physical review letters.

[4]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[5]  A. Jamiołkowski Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .

[6]  H. Araki On an inequality of Lieb and Thirring , 1990 .

[7]  Y. Takane,et al.  Generalized Inverse Matrices , 2011 .

[8]  Renato Renner,et al.  An intuitive proof of the data processing inequality , 2011, Quantum Inf. Comput..

[9]  T Franz,et al.  Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks. , 2011, Physical review letters.

[10]  M. Ruskai Another Short and Elementary Proof of Strong Subadditivity of Quantum Entropy , 2006, quant-ph/0604206.

[11]  Nathan Killoran,et al.  Entanglement quantification and quantum benchmarking of optical communication devices , 2012 .

[12]  E. Lieb Convex trace functions and the Wigner-Yanase-Dyson conjecture , 1973 .

[13]  K. Audenaert On the Araki-Lieb-Thirring inequality , 2007, math/0701129.

[14]  Patrick J. Coles,et al.  Entanglement-assisted guessing of complementary measurement outcomes , 2014 .

[15]  Mark M. Wilde,et al.  Recoverability in quantum information theory , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[16]  E. Lieb,et al.  Inequalities for the Moments of the Eigenvalues of the Schrodinger Hamiltonian and Their Relation to Sobolev Inequalities , 2002 .

[17]  A. E. Rastegin,et al.  Relative error of state-dependent cloning , 2002 .

[18]  Nilanjana Datta,et al.  Min- and Max-Relative Entropies and a New Entanglement Monotone , 2008, IEEE Transactions on Information Theory.

[19]  K. Kraus,et al.  Pure operations and measurements , 1969 .

[20]  Serge Fehr,et al.  On the Conditional Rényi Entropy , 2014, IEEE Transactions on Information Theory.

[21]  Y. Ogata,et al.  Entropic Fluctuations in Quantum Statistical Mechanics. An Introduction , 2011, 1106.3786.

[22]  Robert König,et al.  Quantum entropy and its use , 2017 .

[23]  J. Gibbs On the equilibrium of heterogeneous substances , 1878, American Journal of Science and Arts.

[24]  Fr'ed'eric Dupuis,et al.  Chain rules for quantum Renyi entropies , 2014, 1410.5455.

[25]  Milán Mosonyi Renyi divergences and the classical capacity of finite compound channels , 2013, ArXiv.

[26]  Mario Berta,et al.  The smooth entropy formalism for von Neumann algebras , 2011, 1107.5460.

[27]  Fr'ed'eric Dupuis,et al.  Decoupling with unitary approximate two-designs , 2011, 1109.4348.

[28]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[29]  Renato Renner,et al.  Smooth Renyi entropy and applications , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[30]  Vincent Yan Fu Tan,et al.  Asymptotic Estimates in Information Theory with Non-Vanishing Error Probabilities , 2014, Found. Trends Commun. Inf. Theory.

[31]  Omar Fawzi,et al.  Achieving the Limits of the Noisy-Storage Model Using Entanglement Sampling , 2013, CRYPTO.

[32]  A. E. Rastegin Sine distance for quantum states , 2006 .

[33]  Sergio Verdú,et al.  Approximation theory of output statistics , 1993, IEEE Trans. Inf. Theory.

[34]  F. Furrer,et al.  Position-momentum uncertainty relations in the presence of quantum memory , 2013, 1308.4527.

[35]  T. Andô Concavity of certain maps on positive definite matrices and applications to Hadamard products , 1979 .

[36]  G. Lindblad Expectations and entropy inequalities for finite quantum systems , 1974 .

[37]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[38]  Leonid A. Levin,et al.  Pseudo-random generation from one-way functions , 1989, STOC '89.

[39]  Andreas J. Winter,et al.  “Pretty Strong” Converse for the Quantum Capacity of Degradable Channels , 2013, IEEE Transactions on Information Theory.

[40]  Masahito Hayashi,et al.  Large Deviation Analysis for Quantum Security via Smoothing of Rényi Entropy of Order 2 , 2012, IEEE Transactions on Information Theory.

[41]  Johan Aberg,et al.  The thermodynamic meaning of negative entropy , 2011, Nature.

[42]  Tomohiro Ogawa,et al.  Strong converse and Stein's lemma in quantum hypothesis testing , 2000, IEEE Trans. Inf. Theory.

[43]  Amin Gohari,et al.  Quantum Achievability Proof via Collision Relative Entropy , 2013, IEEE Transactions on Information Theory.

[44]  Robert König,et al.  The Operational Meaning of Min- and Max-Entropy , 2008, IEEE Transactions on Information Theory.

[45]  Nilanjana Datta,et al.  One-Shot Entanglement-Assisted Quantum and Classical Communication , 2011, IEEE Transactions on Information Theory.

[46]  R. Renner,et al.  Uncertainty relation for smooth entropies. , 2010, Physical review letters.

[47]  M. Nussbaum,et al.  Asymptotic Error Rates in Quantum Hypothesis Testing , 2007, Communications in Mathematical Physics.

[48]  M. Sion On general minimax theorems , 1958 .

[49]  Michal Horodecki,et al.  The second laws of quantum thermodynamics , 2013, Proceedings of the National Academy of Sciences.

[50]  P. M. Alberti A note on the transition probability over C*-algebras , 1983 .

[51]  K. Audenaert,et al.  Quantum state discrimination bounds for finite sample size , 2012, 1204.0711.

[52]  Hiroki Koga,et al.  Information-Spectrum Methods in Information Theory , 2002 .

[53]  F. Hiai,et al.  Quantum f-divergences and error correction , 2010, 1008.2529.

[54]  Milán Mosonyi,et al.  Quantum Hypothesis Testing and the Operational Interpretation of the Quantum Rényi Relative Entropies , 2013, ArXiv.

[55]  Marco Tomamichel,et al.  Chain Rules for Smooth Min- and Max-Entropies , 2012, IEEE Transactions on Information Theory.

[56]  Dominique Unruh,et al.  Universally Composable Quantum Multi-party Computation , 2009, EUROCRYPT.

[57]  Marco Tomamichel,et al.  Duality Between Smooth Min- and Max-Entropies , 2009, IEEE Transactions on Information Theory.

[58]  Michael A. Nielsen,et al.  A simple proof of the strong subadditivity inequality , 2005, Quantum Inf. Comput..

[59]  Marco Tomamichel,et al.  Tight finite-key analysis for quantum cryptography , 2011, Nature Communications.

[60]  Marco Tomamichel,et al.  A Fully Quantum Asymptotic Equipartition Property , 2008, IEEE Transactions on Information Theory.

[61]  Masahito Hayashi,et al.  Second-Order Asymptotics in Fixed-Length Source Coding and Intrinsic Randomness , 2005, IEEE Transactions on Information Theory.

[62]  K. Audenaert,et al.  Discriminating States: the quantum Chernoff bound. , 2006, Physical review letters.

[63]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[64]  M. Hayashi Asymptotics of quantum relative entropy from a representation theoretical viewpoint , 1997, quant-ph/9704040.

[65]  R. Renner,et al.  Quantum Conditional Mutual Information and Approximate Markov Chains , 2014, Communications in Mathematical Physics.

[66]  Marco Tomamichel,et al.  Strengthened monotonicity of relative entropy via pinched Petz recovery map , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[67]  Nilanjana Datta,et al.  Smooth Entropies and the Quantum Information Spectrum , 2009, IEEE Transactions on Information Theory.

[68]  Mario Berta,et al.  The Fidelity of Recovery Is Multiplicative , 2015, IEEE Transactions on Information Theory.

[69]  Larry Carter,et al.  Universal Classes of Hash Functions , 1979, J. Comput. Syst. Sci..

[70]  T. Morimoto Markov Processes and the H -Theorem , 1963 .

[71]  M. Nussbaum,et al.  THE CHERNOFF LOWER BOUND FOR SYMMETRIC QUANTUM HYPOTHESIS TESTING , 2006, quant-ph/0607216.

[72]  Anindya De,et al.  Trevisan's Extractor in the Presence of Quantum Side Information , 2009, SIAM J. Comput..

[73]  Joseph M. Renes,et al.  One-Shot Classical Data Compression With Quantum Side Information and the Distillation of Common Randomness or Secret Keys , 2010, IEEE Transactions on Information Theory.

[74]  F. Hiai Concavity of certain matrix trace and norm functions. II , 2012, 1507.00853.

[75]  Jaikumar Radhakrishnan,et al.  Privacy and interaction in quantum communication complexity and a theorem about the relative entropy of quantum states , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[76]  Christian Cachin,et al.  Entropy measures and unconditional security in cryptography , 1997 .

[77]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[78]  Mill Johannes G.A. Van,et al.  Transmission Of Information , 1961 .

[79]  Salman Beigi,et al.  Sandwiched Rényi divergence satisfies data processing inequality , 2013, 1306.5920.

[80]  H. Vincent Poor,et al.  Channel Coding Rate in the Finite Blocklength Regime , 2010, IEEE Transactions on Information Theory.

[81]  C. Fuchs Distinguishability and Accessible Information in Quantum Theory , 1996, quant-ph/9601020.

[82]  J. Neumann Mathematische grundlagen der Quantenmechanik , 1935 .

[83]  Ran Raz,et al.  Exponential Separation for One-Way Quantum Communication Complexity, with Applications to Cryptography , 2008, SIAM J. Comput..

[84]  Joseph M. Renes,et al.  Duality of privacy amplification against quantum adversaries and data compression with quantum side information , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[85]  Robert König,et al.  Universally Composable Privacy Amplification Against Quantum Adversaries , 2004, TCC.

[86]  林 正人 Quantum information : an introduction , 2006 .

[87]  R. Schumann Quantum Information Theory , 2000, quant-ph/0010060.

[88]  Huaiyu Zhu On Information and Sufficiency , 1997 .

[89]  F. Hiai,et al.  The proper formula for relative entropy and its asymptotics in quantum probability , 1991 .

[90]  Mario Berta,et al.  Monotonicity of quantum relative entropy and recoverability , 2014, Quantum Inf. Comput..

[91]  H. Nagaoka The Converse Part of The Theorem for Quantum Hoeffding Bound , 2006, quant-ph/0611289.

[92]  Elliott H. Lieb,et al.  Monotonicity of a relative Rényi entropy , 2013, ArXiv.

[93]  Severin Winkler,et al.  Impossibility of growing quantum bit commitments. , 2011, Physical review letters.

[94]  A. Uhlmann Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in an interpolation theory , 1977 .

[95]  Concavlty of Certain Maps on Posltive Definite Matrices and Applications to Hadamard Products* , 2001 .

[96]  Ran Canetti,et al.  Universally composable security: a new paradigm for cryptographic protocols , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[97]  Robert König,et al.  Sampling of Min-Entropy Relative to Quantum Knowledge , 2007, IEEE Transactions on Information Theory.

[98]  Junji Shikata,et al.  Information Theoretic Security for Encryption Based on Conditional Rényi Entropies , 2013, ICITS.

[99]  N. Datta,et al.  A limit of the quantum Rényi divergence , 2013, 1308.5961.

[100]  D. A. Bell,et al.  Information Theory and Reliable Communication , 1969 .

[101]  Mark M. Wilde,et al.  Strong Converse Rates for Quantum Communication , 2014, IEEE Transactions on Information Theory.

[102]  F. Hiai,et al.  Introduction to Matrix Analysis and Applications , 2014 .

[103]  F. Dupuis The decoupling approach to quantum information theory , 2010, 1004.1641.

[104]  Masahito Hayashi,et al.  Relating different quantum generalizations of the conditional Rényi entropy , 2013, 1311.3887.

[105]  Maassen,et al.  Generalized entropic uncertainty relations. , 1988, Physical review letters.

[106]  K. Kraus,et al.  Operations and measurements. II , 1970 .

[107]  W. Stinespring Positive functions on *-algebras , 1955 .

[108]  John Watrous,et al.  Simpler semidefinite programs for completely bounded norms , 2012, Chic. J. Theor. Comput. Sci..

[109]  E. Knill,et al.  Reversing quantum dynamics with near-optimal quantum and classical fidelity , 2000, quant-ph/0004088.

[110]  Keiji Matsumoto A new quantum version of f-divergence , 2013, 1311.4722.

[111]  Masahito Hayashi,et al.  A Hierarchy of Information Quantities for Finite Block Length Analysis of Quantum Tasks , 2012, IEEE Transactions on Information Theory.

[112]  M. Hayashi Optimal sequence of quantum measurements in the sense of Stein's lemma in quantum hypothesis testing , 2002, quant-ph/0208020.

[113]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[114]  R. Bhatia Positive Definite Matrices , 2007 .

[115]  Elliott H. Lieb,et al.  Extended Quantum Conditional Entropy and Quantum Uncertainty Inequalities , 2012, 1204.0825.

[116]  R. Jozsa Fidelity for Mixed Quantum States , 1994 .

[117]  Mark M. Wilde,et al.  Strong Converse for the Classical Capacity of Entanglement-Breaking and Hadamard Channels via a Sandwiched Rényi Relative Entropy , 2013, Communications in Mathematical Physics.

[118]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[119]  Yaoyun Shi,et al.  Robust protocols for securely expanding randomness and distributing keys using untrusted quantum devices , 2014, STOC.

[120]  Mario Berta,et al.  Renyi generalizations of the conditional quantum mutual information , 2014, ArXiv.

[121]  Renato Renner,et al.  Security of quantum key distribution , 2005, Ausgezeichnete Informatikdissertationen.

[122]  Masahito Hayashi Error exponent in asymmetric quantum hypothesis testing and its application to classical-quantum channel coding , 2006, quant-ph/0611013.

[123]  V. P. Belavkin,et al.  C*-algebraic generalization of relative entropy and entropy , 1982 .

[124]  Nilanjana Datta,et al.  A Smooth Entropy Approach to Quantum Hypothesis Testing and the Classical Capacity of Quantum Channels , 2011, IEEE Transactions on Information Theory.

[125]  Derek W. Robinson,et al.  Mean Entropy of States in Quantum‐Statistical Mechanics , 1968 .

[126]  H. Umegaki Conditional expectation in an operator algebra. IV. Entropy and information , 1962 .

[127]  Joseph M. Renes,et al.  Physical underpinnings of privacy , 2008 .

[128]  Russell Impagliazzo,et al.  How to recycle random bits , 1989, 30th Annual Symposium on Foundations of Computer Science.

[129]  Mark M. Wilde,et al.  Strong Converse Exponents for a Quantum Channel Discrimination Problem and Quantum-Feedback-Assisted Communication , 2014, Communications in Mathematical Physics.

[130]  Fernando G S L Brandão,et al.  Quantum Conditional Mutual Information, Reconstructed States, and State Redistribution. , 2014, Physical review letters.

[131]  Serge Fehr,et al.  On quantum Rényi entropies: A new generalization and some properties , 2013, 1306.3142.

[132]  Mark M. Wilde,et al.  Multiplicativity of Completely Bounded p-Norms Implies a Strong Converse for Entanglement-Assisted Capacity , 2013, ArXiv.

[133]  R. Duffin,et al.  Series and parallel addition of matrices , 1969 .

[134]  Milán Mosonyi,et al.  Strong Converse Exponent for Classical-Quantum Channel Coding , 2014, Communications in Mathematical Physics.

[135]  Masahito Hayashi,et al.  Information Spectrum Approach to Second-Order Coding Rate in Channel Coding , 2008, IEEE Transactions on Information Theory.

[136]  R. Renner,et al.  Min- and Max-Entropy in Infinite Dimensions , 2010, 1004.1386.

[137]  Patrick J. Coles,et al.  Uncertainty relations from simple entropic properties. , 2011, Physical review letters.

[138]  R. Renner,et al.  The minimal work cost of information processing , 2012, Nature Communications.

[139]  E. Lieb,et al.  Some Operator and Trace Function Convexity Theorems , 2014, 1409.0564.

[140]  M. Fannes,et al.  Continuity of quantum conditional information , 2003, quant-ph/0312081.

[141]  Masahito Hayashi,et al.  Correlation detection and an operational interpretation of the Rényi mutual information , 2014, 2015 IEEE International Symposium on Information Theory (ISIT).

[142]  Andreas Winter,et al.  Partial quantum information , 2005, Nature.

[143]  Marco Tomamichel,et al.  Investigating properties of a family of quantum Rényi divergences , 2014, Quantum Inf. Process..

[144]  Ke Li,et al.  Second Order Asymptotics for Quantum Hypothesis Testing , 2012, ArXiv.

[145]  D. Petz Quasi-entropies for finite quantum systems , 1986 .

[146]  N. Langford,et al.  Distance measures to compare real and ideal quantum processes (14 pages) , 2004, quant-ph/0408063.

[147]  W. Heisenberg Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik , 1927 .

[148]  T. Andô,et al.  Means of positive linear operators , 1980 .

[149]  Masahito Hayashi,et al.  An Information-Spectrum Approach to Classical and Quantum Hypothesis Testing for Simple Hypotheses , 2007, IEEE Transactions on Information Theory.

[150]  G. Lindblad Completely positive maps and entropy inequalities , 1975 .

[151]  Ueli Maurer,et al.  On the power of quantum memory , 2005, IEEE Transactions on Information Theory.

[152]  Jeroen van de Graaf,et al.  Cryptographic Distinguishability Measures for Quantum-Mechanical States , 1997, IEEE Trans. Inf. Theory.

[153]  D. Bures An extension of Kakutani’s theorem on infinite product measures to the tensor product of semifinite *-algebras , 1969 .

[154]  Imre Csiszár,et al.  Axiomatic Characterizations of Information Measures , 2008, Entropy.