暂无分享,去创建一个
[1] M. Tomamichel. A framework for non-asymptotic quantum information theory , 2012, 1203.2142.
[2] M. Horodecki,et al. Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.
[3] Naresh Sharma,et al. Fundamental bound on the reliability of quantum information transmission , 2012, Physical review letters.
[4] Sang Joon Kim,et al. A Mathematical Theory of Communication , 2006 .
[5] A. Jamiołkowski. Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .
[6] H. Araki. On an inequality of Lieb and Thirring , 1990 .
[7] Y. Takane,et al. Generalized Inverse Matrices , 2011 .
[8] Renato Renner,et al. An intuitive proof of the data processing inequality , 2011, Quantum Inf. Comput..
[9] T Franz,et al. Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks. , 2011, Physical review letters.
[10] M. Ruskai. Another Short and Elementary Proof of Strong Subadditivity of Quantum Entropy , 2006, quant-ph/0604206.
[11] Nathan Killoran,et al. Entanglement quantification and quantum benchmarking of optical communication devices , 2012 .
[12] E. Lieb. Convex trace functions and the Wigner-Yanase-Dyson conjecture , 1973 .
[13] K. Audenaert. On the Araki-Lieb-Thirring inequality , 2007, math/0701129.
[14] Patrick J. Coles,et al. Entanglement-assisted guessing of complementary measurement outcomes , 2014 .
[15] Mark M. Wilde,et al. Recoverability in quantum information theory , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[16] E. Lieb,et al. Inequalities for the Moments of the Eigenvalues of the Schrodinger Hamiltonian and Their Relation to Sobolev Inequalities , 2002 .
[17] A. E. Rastegin,et al. Relative error of state-dependent cloning , 2002 .
[18] Nilanjana Datta,et al. Min- and Max-Relative Entropies and a New Entanglement Monotone , 2008, IEEE Transactions on Information Theory.
[19] K. Kraus,et al. Pure operations and measurements , 1969 .
[20] Serge Fehr,et al. On the Conditional Rényi Entropy , 2014, IEEE Transactions on Information Theory.
[21] Y. Ogata,et al. Entropic Fluctuations in Quantum Statistical Mechanics. An Introduction , 2011, 1106.3786.
[22] Robert König,et al. Quantum entropy and its use , 2017 .
[23] J. Gibbs. On the equilibrium of heterogeneous substances , 1878, American Journal of Science and Arts.
[24] Fr'ed'eric Dupuis,et al. Chain rules for quantum Renyi entropies , 2014, 1410.5455.
[25] Milán Mosonyi. Renyi divergences and the classical capacity of finite compound channels , 2013, ArXiv.
[26] Mario Berta,et al. The smooth entropy formalism for von Neumann algebras , 2011, 1107.5460.
[27] Fr'ed'eric Dupuis,et al. Decoupling with unitary approximate two-designs , 2011, 1109.4348.
[28] C. Tsallis. Possible generalization of Boltzmann-Gibbs statistics , 1988 .
[29] Renato Renner,et al. Smooth Renyi entropy and applications , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..
[30] Vincent Yan Fu Tan,et al. Asymptotic Estimates in Information Theory with Non-Vanishing Error Probabilities , 2014, Found. Trends Commun. Inf. Theory.
[31] Omar Fawzi,et al. Achieving the Limits of the Noisy-Storage Model Using Entanglement Sampling , 2013, CRYPTO.
[32] A. E. Rastegin. Sine distance for quantum states , 2006 .
[33] Sergio Verdú,et al. Approximation theory of output statistics , 1993, IEEE Trans. Inf. Theory.
[34] F. Furrer,et al. Position-momentum uncertainty relations in the presence of quantum memory , 2013, 1308.4527.
[35] T. Andô. Concavity of certain maps on positive definite matrices and applications to Hadamard products , 1979 .
[36] G. Lindblad. Expectations and entropy inequalities for finite quantum systems , 1974 .
[37] Ekert,et al. Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.
[38] Leonid A. Levin,et al. Pseudo-random generation from one-way functions , 1989, STOC '89.
[39] Andreas J. Winter,et al. “Pretty Strong” Converse for the Quantum Capacity of Degradable Channels , 2013, IEEE Transactions on Information Theory.
[40] Masahito Hayashi,et al. Large Deviation Analysis for Quantum Security via Smoothing of Rényi Entropy of Order 2 , 2012, IEEE Transactions on Information Theory.
[41] Johan Aberg,et al. The thermodynamic meaning of negative entropy , 2011, Nature.
[42] Tomohiro Ogawa,et al. Strong converse and Stein's lemma in quantum hypothesis testing , 2000, IEEE Trans. Inf. Theory.
[43] Amin Gohari,et al. Quantum Achievability Proof via Collision Relative Entropy , 2013, IEEE Transactions on Information Theory.
[44] Robert König,et al. The Operational Meaning of Min- and Max-Entropy , 2008, IEEE Transactions on Information Theory.
[45] Nilanjana Datta,et al. One-Shot Entanglement-Assisted Quantum and Classical Communication , 2011, IEEE Transactions on Information Theory.
[46] R. Renner,et al. Uncertainty relation for smooth entropies. , 2010, Physical review letters.
[47] M. Nussbaum,et al. Asymptotic Error Rates in Quantum Hypothesis Testing , 2007, Communications in Mathematical Physics.
[48] M. Sion. On general minimax theorems , 1958 .
[49] Michal Horodecki,et al. The second laws of quantum thermodynamics , 2013, Proceedings of the National Academy of Sciences.
[50] P. M. Alberti. A note on the transition probability over C*-algebras , 1983 .
[51] K. Audenaert,et al. Quantum state discrimination bounds for finite sample size , 2012, 1204.0711.
[52] Hiroki Koga,et al. Information-Spectrum Methods in Information Theory , 2002 .
[53] F. Hiai,et al. Quantum f-divergences and error correction , 2010, 1008.2529.
[54] Milán Mosonyi,et al. Quantum Hypothesis Testing and the Operational Interpretation of the Quantum Rényi Relative Entropies , 2013, ArXiv.
[55] Marco Tomamichel,et al. Chain Rules for Smooth Min- and Max-Entropies , 2012, IEEE Transactions on Information Theory.
[56] Dominique Unruh,et al. Universally Composable Quantum Multi-party Computation , 2009, EUROCRYPT.
[57] Marco Tomamichel,et al. Duality Between Smooth Min- and Max-Entropies , 2009, IEEE Transactions on Information Theory.
[58] Michael A. Nielsen,et al. A simple proof of the strong subadditivity inequality , 2005, Quantum Inf. Comput..
[59] Marco Tomamichel,et al. Tight finite-key analysis for quantum cryptography , 2011, Nature Communications.
[60] Marco Tomamichel,et al. A Fully Quantum Asymptotic Equipartition Property , 2008, IEEE Transactions on Information Theory.
[61] Masahito Hayashi,et al. Second-Order Asymptotics in Fixed-Length Source Coding and Intrinsic Randomness , 2005, IEEE Transactions on Information Theory.
[62] K. Audenaert,et al. Discriminating States: the quantum Chernoff bound. , 2006, Physical review letters.
[63] Gilles Brassard,et al. Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..
[64] M. Hayashi. Asymptotics of quantum relative entropy from a representation theoretical viewpoint , 1997, quant-ph/9704040.
[65] R. Renner,et al. Quantum Conditional Mutual Information and Approximate Markov Chains , 2014, Communications in Mathematical Physics.
[66] Marco Tomamichel,et al. Strengthened monotonicity of relative entropy via pinched Petz recovery map , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).
[67] Nilanjana Datta,et al. Smooth Entropies and the Quantum Information Spectrum , 2009, IEEE Transactions on Information Theory.
[68] Mario Berta,et al. The Fidelity of Recovery Is Multiplicative , 2015, IEEE Transactions on Information Theory.
[69] Larry Carter,et al. Universal Classes of Hash Functions , 1979, J. Comput. Syst. Sci..
[70] T. Morimoto. Markov Processes and the H -Theorem , 1963 .
[71] M. Nussbaum,et al. THE CHERNOFF LOWER BOUND FOR SYMMETRIC QUANTUM HYPOTHESIS TESTING , 2006, quant-ph/0607216.
[72] Anindya De,et al. Trevisan's Extractor in the Presence of Quantum Side Information , 2009, SIAM J. Comput..
[73] Joseph M. Renes,et al. One-Shot Classical Data Compression With Quantum Side Information and the Distillation of Common Randomness or Secret Keys , 2010, IEEE Transactions on Information Theory.
[74] F. Hiai. Concavity of certain matrix trace and norm functions. II , 2012, 1507.00853.
[75] Jaikumar Radhakrishnan,et al. Privacy and interaction in quantum communication complexity and a theorem about the relative entropy of quantum states , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..
[76] Christian Cachin,et al. Entropy measures and unconditional security in cryptography , 1997 .
[77] Pérès. Separability Criterion for Density Matrices. , 1996, Physical review letters.
[78] Mill Johannes G.A. Van,et al. Transmission Of Information , 1961 .
[79] Salman Beigi,et al. Sandwiched Rényi divergence satisfies data processing inequality , 2013, 1306.5920.
[80] H. Vincent Poor,et al. Channel Coding Rate in the Finite Blocklength Regime , 2010, IEEE Transactions on Information Theory.
[81] C. Fuchs. Distinguishability and Accessible Information in Quantum Theory , 1996, quant-ph/9601020.
[82] J. Neumann. Mathematische grundlagen der Quantenmechanik , 1935 .
[83] Ran Raz,et al. Exponential Separation for One-Way Quantum Communication Complexity, with Applications to Cryptography , 2008, SIAM J. Comput..
[84] Joseph M. Renes,et al. Duality of privacy amplification against quantum adversaries and data compression with quantum side information , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[85] Robert König,et al. Universally Composable Privacy Amplification Against Quantum Adversaries , 2004, TCC.
[86] 林 正人. Quantum information : an introduction , 2006 .
[87] R. Schumann. Quantum Information Theory , 2000, quant-ph/0010060.
[88] Huaiyu Zhu. On Information and Sufficiency , 1997 .
[89] F. Hiai,et al. The proper formula for relative entropy and its asymptotics in quantum probability , 1991 .
[90] Mario Berta,et al. Monotonicity of quantum relative entropy and recoverability , 2014, Quantum Inf. Comput..
[91] H. Nagaoka. The Converse Part of The Theorem for Quantum Hoeffding Bound , 2006, quant-ph/0611289.
[92] Elliott H. Lieb,et al. Monotonicity of a relative Rényi entropy , 2013, ArXiv.
[93] Severin Winkler,et al. Impossibility of growing quantum bit commitments. , 2011, Physical review letters.
[94] A. Uhlmann. Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in an interpolation theory , 1977 .
[95] Concavlty of Certain Maps on Posltive Definite Matrices and Applications to Hadamard Products* , 2001 .
[96] Ran Canetti,et al. Universally composable security: a new paradigm for cryptographic protocols , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.
[97] Robert König,et al. Sampling of Min-Entropy Relative to Quantum Knowledge , 2007, IEEE Transactions on Information Theory.
[98] Junji Shikata,et al. Information Theoretic Security for Encryption Based on Conditional Rényi Entropies , 2013, ICITS.
[99] N. Datta,et al. A limit of the quantum Rényi divergence , 2013, 1308.5961.
[100] D. A. Bell,et al. Information Theory and Reliable Communication , 1969 .
[101] Mark M. Wilde,et al. Strong Converse Rates for Quantum Communication , 2014, IEEE Transactions on Information Theory.
[102] F. Hiai,et al. Introduction to Matrix Analysis and Applications , 2014 .
[103] F. Dupuis. The decoupling approach to quantum information theory , 2010, 1004.1641.
[104] Masahito Hayashi,et al. Relating different quantum generalizations of the conditional Rényi entropy , 2013, 1311.3887.
[105] Maassen,et al. Generalized entropic uncertainty relations. , 1988, Physical review letters.
[106] K. Kraus,et al. Operations and measurements. II , 1970 .
[107] W. Stinespring. Positive functions on *-algebras , 1955 .
[108] John Watrous,et al. Simpler semidefinite programs for completely bounded norms , 2012, Chic. J. Theor. Comput. Sci..
[109] E. Knill,et al. Reversing quantum dynamics with near-optimal quantum and classical fidelity , 2000, quant-ph/0004088.
[110] Keiji Matsumoto. A new quantum version of f-divergence , 2013, 1311.4722.
[111] Masahito Hayashi,et al. A Hierarchy of Information Quantities for Finite Block Length Analysis of Quantum Tasks , 2012, IEEE Transactions on Information Theory.
[112] M. Hayashi. Optimal sequence of quantum measurements in the sense of Stein's lemma in quantum hypothesis testing , 2002, quant-ph/0208020.
[113] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[114] R. Bhatia. Positive Definite Matrices , 2007 .
[115] Elliott H. Lieb,et al. Extended Quantum Conditional Entropy and Quantum Uncertainty Inequalities , 2012, 1204.0825.
[116] R. Jozsa. Fidelity for Mixed Quantum States , 1994 .
[117] Mark M. Wilde,et al. Strong Converse for the Classical Capacity of Entanglement-Breaking and Hadamard Channels via a Sandwiched Rényi Relative Entropy , 2013, Communications in Mathematical Physics.
[118] Thomas M. Cover,et al. Elements of Information Theory , 2005 .
[119] Yaoyun Shi,et al. Robust protocols for securely expanding randomness and distributing keys using untrusted quantum devices , 2014, STOC.
[120] Mario Berta,et al. Renyi generalizations of the conditional quantum mutual information , 2014, ArXiv.
[121] Renato Renner,et al. Security of quantum key distribution , 2005, Ausgezeichnete Informatikdissertationen.
[122] Masahito Hayashi. Error exponent in asymmetric quantum hypothesis testing and its application to classical-quantum channel coding , 2006, quant-ph/0611013.
[123] V. P. Belavkin,et al. C*-algebraic generalization of relative entropy and entropy , 1982 .
[124] Nilanjana Datta,et al. A Smooth Entropy Approach to Quantum Hypothesis Testing and the Classical Capacity of Quantum Channels , 2011, IEEE Transactions on Information Theory.
[125] Derek W. Robinson,et al. Mean Entropy of States in Quantum‐Statistical Mechanics , 1968 .
[126] H. Umegaki. Conditional expectation in an operator algebra. IV. Entropy and information , 1962 .
[127] Joseph M. Renes,et al. Physical underpinnings of privacy , 2008 .
[128] Russell Impagliazzo,et al. How to recycle random bits , 1989, 30th Annual Symposium on Foundations of Computer Science.
[129] Mark M. Wilde,et al. Strong Converse Exponents for a Quantum Channel Discrimination Problem and Quantum-Feedback-Assisted Communication , 2014, Communications in Mathematical Physics.
[130] Fernando G S L Brandão,et al. Quantum Conditional Mutual Information, Reconstructed States, and State Redistribution. , 2014, Physical review letters.
[131] Serge Fehr,et al. On quantum Rényi entropies: A new generalization and some properties , 2013, 1306.3142.
[132] Mark M. Wilde,et al. Multiplicativity of Completely Bounded p-Norms Implies a Strong Converse for Entanglement-Assisted Capacity , 2013, ArXiv.
[133] R. Duffin,et al. Series and parallel addition of matrices , 1969 .
[134] Milán Mosonyi,et al. Strong Converse Exponent for Classical-Quantum Channel Coding , 2014, Communications in Mathematical Physics.
[135] Masahito Hayashi,et al. Information Spectrum Approach to Second-Order Coding Rate in Channel Coding , 2008, IEEE Transactions on Information Theory.
[136] R. Renner,et al. Min- and Max-Entropy in Infinite Dimensions , 2010, 1004.1386.
[137] Patrick J. Coles,et al. Uncertainty relations from simple entropic properties. , 2011, Physical review letters.
[138] R. Renner,et al. The minimal work cost of information processing , 2012, Nature Communications.
[139] E. Lieb,et al. Some Operator and Trace Function Convexity Theorems , 2014, 1409.0564.
[140] M. Fannes,et al. Continuity of quantum conditional information , 2003, quant-ph/0312081.
[141] Masahito Hayashi,et al. Correlation detection and an operational interpretation of the Rényi mutual information , 2014, 2015 IEEE International Symposium on Information Theory (ISIT).
[142] Andreas Winter,et al. Partial quantum information , 2005, Nature.
[143] Marco Tomamichel,et al. Investigating properties of a family of quantum Rényi divergences , 2014, Quantum Inf. Process..
[144] Ke Li,et al. Second Order Asymptotics for Quantum Hypothesis Testing , 2012, ArXiv.
[145] D. Petz. Quasi-entropies for finite quantum systems , 1986 .
[146] N. Langford,et al. Distance measures to compare real and ideal quantum processes (14 pages) , 2004, quant-ph/0408063.
[147] W. Heisenberg. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik , 1927 .
[148] T. Andô,et al. Means of positive linear operators , 1980 .
[149] Masahito Hayashi,et al. An Information-Spectrum Approach to Classical and Quantum Hypothesis Testing for Simple Hypotheses , 2007, IEEE Transactions on Information Theory.
[150] G. Lindblad. Completely positive maps and entropy inequalities , 1975 .
[151] Ueli Maurer,et al. On the power of quantum memory , 2005, IEEE Transactions on Information Theory.
[152] Jeroen van de Graaf,et al. Cryptographic Distinguishability Measures for Quantum-Mechanical States , 1997, IEEE Trans. Inf. Theory.
[153] D. Bures. An extension of Kakutani’s theorem on infinite product measures to the tensor product of semifinite *-algebras , 1969 .
[154] Imre Csiszár,et al. Axiomatic Characterizations of Information Measures , 2008, Entropy.