AN EARLY DRAFT OF A PROPOSED TEXTBOOK

[1]  D. Haussler,et al.  Boolean Feature Discovery in Empirical Learning , 1990, Machine Learning.

[2]  Richard S. Sutton,et al.  Learning to predict by the methods of temporal differences , 1988, Machine Learning.

[3]  Douglas H. Fisher,et al.  Knowledge Acquisition Via Incremental Conceptual Clustering , 1987, Machine Learning.

[4]  R. Mooney,et al.  Explanation-Based Learning: An Alternative View , 1986, Machine Learning.

[5]  F. Lemmermeyer Error-correcting Codes , 2005 .

[6]  Haym Hirsh,et al.  Generalizing Version Spaces , 1994, Machine Learning.

[7]  Terrence J. Sejnowski,et al.  TD(λ) Converges with Probability 1 , 1994, Machine Learning.

[8]  M. Pazzani,et al.  The Utility of Knowledge in Inductive Learning , 1992, Machine Learning.

[9]  Peter Dayan,et al.  Technical Note: Q-Learning , 2004, Machine Learning.

[10]  Gerald Tesauro,et al.  Practical issues in temporal difference learning , 1992, Machine Learning.

[11]  Long Ji Lin,et al.  Self-improving reactive agents based on reinforcement learning, planning and teaching , 1992, Machine Learning.

[12]  Peter Dayan,et al.  The convergence of TD(λ) for general λ , 1992, Machine Learning.

[13]  Roland J. Zito-Wolf,et al.  Learning search control knowledge: An explanation-based approach , 1991, Machine Learning.

[14]  J. Ross Quinlan,et al.  Learning logical definitions from relations , 1990, Machine Learning.

[15]  Paul E. Utgoff,et al.  Incremental Induction of Decision Trees , 1989, Machine Learning.

[16]  Tom M. Mitchell,et al.  Explanation-Based Generalization: A Unifying View , 1986, Machine Learning.

[17]  A. Newell,et al.  Chunking in Soar: The Anatomy of a General Learning Mechanism , 1986, Machine Learning.

[18]  J. Ross Quinlan,et al.  Induction of Decision Trees , 1986, Machine Learning.

[19]  Andrew W. Moore,et al.  Prioritized sweeping: Reinforcement learning with less data and less time , 2004, Machine Learning.

[20]  D. Kibler,et al.  Instance-based learning algorithms , 2004, Machine Learning.

[21]  Ronald L. Rivest,et al.  Learning decision lists , 2004, Machine Learning.

[22]  R. Mooney,et al.  Explanation-Based Learning: An Alternative View , 1986, Machine Learning.

[23]  Raymond J. Mooney,et al.  Symbolic and neural learning algorithms: An experimental comparison , 1991, Machine Learning.

[24]  Anja Vogler,et al.  An Introduction to Multivariate Statistical Analysis , 2004 .

[25]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[26]  Ben J. A. Kröse,et al.  Learning from delayed rewards , 1995, Robotics Auton. Syst..

[27]  George H. John,et al.  Robust Linear Discriminant Trees , 1995, AISTATS.

[28]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[29]  Andrew G. Barto,et al.  Learning to Act Using Real-Time Dynamic Programming , 1995, Artif. Intell..

[30]  David J. Spiegelhalter,et al.  Machine Learning, Neural and Statistical Classification , 2009 .

[31]  Pat Langley,et al.  Elements of Machine Learning , 1995 .

[32]  J. R. Quinlan,et al.  Comparing connectionist and symbolic learning methods , 1994, COLT 1994.

[33]  Wolfgang Maass,et al.  How fast can a threshold gate learn , 1994, COLT 1994.

[34]  Ron Kohavi,et al.  Bottom-Up Induction of Oblivious Read-Once Decision Graphs: Strengths and Limitations , 1994, AAAI.

[35]  Una-May O'Reilly,et al.  Genetic Programming II: Automatic Discovery of Reusable Programs. , 1994, Artificial Life.

[36]  Eric L. Schwartz,et al.  Computational Neuroscience , 1993, Neuromethods.

[37]  Dean A. Pomerleau,et al.  Neural Network Perception for Mobile Robot Guidance , 1993 .

[38]  Usama M. Fayyad,et al.  SKICAT: A Machine Learning System for Automated Cataloging of Large Scale Sky Surveys , 1993, ICML.

[39]  Long Ji Lin,et al.  Scaling Up Reinforcement Learning for Robot Control , 1993, International Conference on Machine Learning.

[40]  Anton Schwartz,et al.  A Reinforcement Learning Method for Maximizing Undiscounted Rewards , 1993, ICML.

[41]  D. Hammerstrom,et al.  Neural networks at work , 1993, IEEE Spectrum.

[42]  Oren Etzioni,et al.  A Structural Theory of Explanation-Based Learning , 1993, Artif. Intell..

[43]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[44]  Mario Marchand,et al.  On learning simple neural concepts: from halfspace intersections to neural decision lists , 1993 .

[45]  David C. Wilkins,et al.  Readings in Knowledge Acquisition and Learning: Automating the Construction and Improvement of Expert Systems , 1992 .

[46]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[47]  Donald Michie Directions in machine intelligence , 1992 .

[48]  Timothy L. Acorn,et al.  Smart: Support: Management Automated Reasoning Technology for Compaq Customer Service , 1992, IAAI.

[49]  Sridhar Mahadevan,et al.  Automatic Programming of Behavior-Based Robots Using Reinforcement Learning , 1991, Artif. Intell..

[50]  Daniel N. Hill,et al.  An Empirical Investigation of Brute Force to choose Features, Smoothers and Function Approximators , 1992 .

[51]  Anders Krogh,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[52]  Balas K. Natarajan,et al.  Machine Learning: A Theoretical Approach , 1992 .

[53]  Andrew W. Moore,et al.  Fast, Robust Adaptive Control by Learning only Forward Models , 1991, NIPS.

[54]  Jude W. Shavlik,et al.  Interpretation of Artificial Neural Networks: Mapping Knowledge-Based Neural Networks into Rules , 1991, NIPS.

[55]  Oren Etzioni,et al.  STATIC: A Problem-Space Compiler for PRODIGY , 1991, AAAI.

[56]  Thomas G. Dietterich,et al.  Error-Correcting Output Codes: A General Method for Improving Multiclass Inductive Learning Programs , 1991, AAAI.

[57]  Ryszard S. Michalski,et al.  Comparing learning paradigms via diagrammatic visualization: a case study in single concept learning using symbolic, neural net and genetic algorithm methods , 1991 .

[58]  Richard P. Brent,et al.  Fast training algorithms for multilayer neural nets , 1991, IEEE Trans. Neural Networks.

[59]  Thomas G. Dietterich,et al.  Readings in Machine Learning , 1991 .

[60]  Belur V. Dasarathy,et al.  Nearest neighbor (NN) norms: NN pattern classification techniques , 1991 .

[61]  øöö Blockinø Fast Training Algorithms for Multi-layer Neural Nets , 1991 .

[62]  L. Kaelbling Learning in embedded systems , 1993 .

[63]  Sholom M. Weiss,et al.  Computer Systems That Learn , 1990 .

[64]  Dean Pomerleau,et al.  Rapidly Adapting Artificial Neural Networks for Autonomous Navigation , 1990, NIPS.

[65]  Bernard Widrow,et al.  30 years of adaptive neural networks: perceptron, Madaline, and backpropagation , 1990, Proc. IEEE.

[66]  Matthew Zeidenberg,et al.  Neural networks in artificial intelligence , 1990, Ellis Horwood series in artificial intelligence.

[67]  Thomas G. Dietterich,et al.  A Comparative Study of ID3 and Backpropagation for English Text-to-Speech Mapping , 1990, ML.

[68]  Richard S. Sutton,et al.  Integrated Architectures for Learning, Planning, and Reacting Based on Approximating Dynamic Programming , 1990, ML.

[69]  Eric B. Baum,et al.  When Are k-Nearest Neighbor and Back Propagation Accurate for Feasible Sized Sets of Examples? , 1990, EURASIP Workshop.

[70]  W S McCulloch,et al.  A logical calculus of the ideas immanent in nervous activity , 1990, The Philosophy of Artificial Intelligence.

[71]  Andrew W. Moore,et al.  Efficient memory-based learning for robot control , 1990 .

[72]  Nils J. Nilsson,et al.  The Mathematical Foundations of Learning Machines , 1990 .

[73]  David Haussler,et al.  Learnability and the Vapnik-Chervonenkis dimension , 1989, JACM.

[74]  Ronald L. Rivest,et al.  Inferring Decision Trees Using the Minimum Description Length Principle , 1989, Inf. Comput..

[75]  Yves Kodratoff,et al.  Learning by Analogy , 1989 .

[76]  Stephen H. Unger The essence of logic circuits , 1989 .

[77]  David Haussler,et al.  What Size Net Gives Valid Generalization? , 1989, Neural Computation.

[78]  Christian Lebiere,et al.  The Cascade-Correlation Learning Architecture , 1989, NIPS.

[79]  James Kelly,et al.  AutoClass: A Bayesian Classification System , 1993, ML.

[80]  Leslie G. Valiant,et al.  A general lower bound on the number of examples needed for learning , 1988, COLT '88.

[81]  Robert A. Mueller,et al.  Symbolic Computing with LISP and PROLOG , 1988 .

[82]  David Haussler,et al.  Quantifying Inductive Bias: AI Learning Algorithms and Valiant's Learning Framework , 1988, Artif. Intell..

[83]  Steven Minton,et al.  Quantitative Results Concerning the Utility of Explanation-based Learning , 1988, Artif. Intell..

[84]  K. Jabbour,et al.  ALFA: automated load forecasting assistant , 1988 .

[85]  Neil A. Duffie,et al.  Computer Control of Machines and Processes , 1988 .

[86]  N. Littlestone Learning Quickly When Irrelevant Attributes Abound: A New Linear-Threshold Algorithm , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[87]  J. Ross Quinlan,et al.  Generating Production Rules from Decision Trees , 1987, IJCAI.

[88]  Michael R. Genesereth,et al.  Logical foundations of artificial intelligence , 1987 .

[89]  B. Efron The jackknife, the bootstrap, and other resampling plans , 1987 .

[90]  John H. Holland,et al.  Escaping brittleness: the possibilities of general-purpose learning algorithms applied to parallel rule-based systems , 1995 .

[91]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[92]  S. Thomas Alexander,et al.  Adaptive Signal Processing , 1986, Texts and Monographs in Computer Science.

[93]  Bernard Widrow,et al.  Adaptive Signal Processing , 1985 .

[94]  Leslie G. Valiant,et al.  A theory of the learnable , 1984, STOC '84.

[95]  Tom M. Mitchell,et al.  Generalization as Search , 2002 .

[96]  Temple F. Smith Occam's razor , 1980, Nature.

[97]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[98]  Jon Louis Bentley,et al.  An Algorithm for Finding Best Matches in Logarithmic Expected Time , 1977, TOMS.

[99]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[100]  P. Werbos,et al.  Beyond Regression : "New Tools for Prediction and Analysis in the Behavioral Sciences , 1974 .

[101]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[102]  G. Bower,et al.  Human Associative Memory , 1973 .

[103]  Richard Fikes,et al.  Learning and Executing Generalized Robot Plans , 1993, Artif. Intell..

[104]  J. Meditch,et al.  Applied optimal control , 1972, IEEE Transactions on Automatic Control.

[105]  Robert O. Winder,et al.  Threshold logic , 1971, IEEE Spectrum.

[106]  Saburo Muroga,et al.  Threshold logic and its applications , 1971 .

[107]  Vladimir Vapnik,et al.  Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .

[108]  Peter E. Hart,et al.  Nearest neighbor pattern classification , 1967, IEEE Trans. Inf. Theory.

[109]  Richard O. Duda,et al.  Pattern Classification by Iteratively Determined Linear and Piecewise Linear Discriminant Functions , 1966, IEEE Trans. Electron. Comput..

[110]  Philip J. Stone,et al.  Experiments in induction , 1966 .

[111]  Thomas M. Cover,et al.  Geometrical and Statistical Properties of Systems of Linear Inequalities with Applications in Pattern Recognition , 1965, IEEE Trans. Electron. Comput..

[112]  Peter E. Hart,et al.  GRAPHICAL-DATA-PROCESSING RESEARCH STUDY AND EXPERIMENTAL INVESTIGATION , 1964 .

[113]  W. W. Peterson,et al.  Error-Correcting Codes. , 1962 .

[114]  A. A. Mullin,et al.  Principles of neurodynamics , 1962 .

[115]  E. A. Feigenbaum,et al.  The simulation of verbal learning behavior , 1899, IRE-AIEE-ACM '61 (Western).

[116]  Robert O. Winder,et al.  Single stage threshold logic , 1961, SWCT.

[117]  Arthur L. Samuel,et al.  Some Studies in Machine Learning Using the Game of Checkers , 1967, IBM J. Res. Dev..

[118]  T. W. Anderson,et al.  An Introduction to Multivariate Statistical Analysis , 1959 .