Computational reconstruction of atomistic protein structures from coarse-grained models

Three-dimensional protein structures, whether determined experimentally or theoretically, are often too low resolution. In this mini-review, we outline the computational methods for protein structure reconstruction from incomplete coarse-grained to all atomistic models. Typical reconstruction schemes can be divided into four major steps. Usually, the first step is reconstruction of the protein backbone chain starting from the C-alpha trace. This is followed by side-chains rebuilding based on protein backbone geometry. Subsequently, hydrogen atoms can be reconstructed. Finally, the resulting all-atom models may require structure optimization. Many methods are available to perform each of these tasks. We discuss the available tools and their potential applications in integrative modeling pipelines that can transfer coarse-grained information from computational predictions, or experiment, to all atomistic structures.

[1]  Jianlin Cheng,et al.  CONFOLD: Residue‐residue contact‐guided ab initio protein folding , 2015, Proteins.

[2]  M Feig,et al.  Accurate reconstruction of all‐atom protein representations from side‐chain‐based low‐resolution models , 2000, Proteins.

[3]  Mariusz Milik,et al.  Algorithm for rapid reconstruction of protein backbone from alpha carbon coordinates , 1997 .

[4]  Junjun Mao,et al.  MCCE2: Improving protein pKa calculations with extensive side chain rotamer sampling , 2009, J. Comput. Chem..

[5]  Tom Lenaerts,et al.  Reconstruction of Protein Backbones from the BriX Collection of Canonical Protein Fragments , 2008, PLoS Comput. Biol..

[6]  Roland L. Dunbrack,et al.  A smoothed backbone-dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions. , 2011, Structure.

[7]  Krista Joosten,et al.  PDB_REDO: constructive validation, more than just looking for errors , 2012, Acta crystallographica. Section D, Biological crystallography.

[8]  L. Serrano,et al.  Protein-peptide interactions adopt the same structural motifs as monomeric protein folds. , 2009, Structure.

[9]  Z. Xiang,et al.  On the role of the crystal environment in determining protein side-chain conformations. , 2002, Journal of molecular biology.

[10]  Mateusz Kurcinski,et al.  CABS-flex standalone: a simulation environment for fast modeling of protein flexibility , 2018, Bioinform..

[11]  D. Baker,et al.  Modeling structurally variable regions in homologous proteins with rosetta , 2004, Proteins.

[12]  Karl F Freed,et al.  Accurate calculation of side chain packing and free energy with applications to protein molecular dynamics , 2018, PLoS Comput. Biol..

[13]  R. Aebersold,et al.  Crosslinking and Mass Spectrometry: An Integrated Technology to Understand the Structure and Function of Molecular Machines. , 2016, Trends in biochemical sciences.

[14]  Phillip J Stansfeld,et al.  From Coarse Grained to Atomistic: A Serial Multiscale Approach to Membrane Protein Simulations. , 2011, Journal of chemical theory and computation.

[15]  N. Guex,et al.  SWISS‐MODEL and the Swiss‐Pdb Viewer: An environment for comparative protein modeling , 1997, Electrophoresis.

[16]  Ilya A. Vakser,et al.  Correlation analysis of the side-chains conformational distribution in bound and unbound proteins , 2012, BMC Bioinformatics.

[17]  Alessandro Pandini,et al.  Structural alphabets derived from attractors in conformational space , 2010, BMC Bioinformatics.

[18]  A. Kolinski,et al.  Coarse-Grained Protein Models and Their Applications. , 2016, Chemical reviews.

[19]  Matthias Rarey,et al.  Fast automated placement of polar hydrogen atoms in protein-ligand complexes , 2009, J. Cheminformatics.

[20]  M. Levitt,et al.  Protein decoy assembly using short fragments under geometric constraints , 2003, Biopolymers.

[21]  J. Richardson,et al.  Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. , 1999, Journal of molecular biology.

[22]  Piero Fariselli,et al.  FT-COMAR: fault tolerant three-dimensional structure reconstruction from protein contact maps , 2008, Bioinform..

[23]  Julian Echave,et al.  Too packed to change: side-chain packing and site-specific substitution rates in protein evolution , 2015, PeerJ.

[24]  Dominik Gront,et al.  Coarse-Grained Modeling of the Interplay between Secondary Structure Propensities and Protein Fold Assembly. , 2018, Journal of chemical theory and computation.

[25]  Janusz M. Bujnicki,et al.  GDFuzz3D: a method for protein 3D structure reconstruction from contact maps, based on a non-Euclidean distance function , 2015, Bioinform..

[26]  Ora Schueler-Furman,et al.  Protocols for All-Atom Reconstruction and High-Resolution Refinement of Protein-Peptide Complex Structures. , 2020, Methods in molecular biology.

[27]  Pierre Tufféry,et al.  SABBAC: online Structural Alphabet-based protein BackBone reconstruction from Alpha-Carbon trace , 2006, Nucleic Acids Res..

[28]  J. Andrew McCammon,et al.  Unconstrained enhanced sampling for free energy calculations of biomolecules: a review , 2016, Molecular simulation.

[29]  Jinbo Xu,et al.  Rapid Protein Side-Chain Packing via Tree Decomposition , 2005, RECOMB.

[30]  Matthias Rarey,et al.  Towards an Integrated Description of Hydrogen Bonding and Dehydration: Decreasing False Positives in Virtual Screening with the HYDE Scoring Function , 2008, ChemMedChem.

[31]  Esben Trabjerg,et al.  Conformational analysis of complex protein states by hydrogen/deuterium exchange mass spectrometry (HDX-MS): Challenges and emerging solutions , 2018, TrAC Trends in Analytical Chemistry.

[32]  Carsten Kutzner,et al.  Tackling Exascale Software Challenges in Molecular Dynamics Simulations with GROMACS , 2015, EASC.

[33]  Yang Zhang,et al.  Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. , 2011, Biophysical journal.

[34]  Carlos A. Brizuela,et al.  Protein side-chain packing problem: is there still room for improvement? , 2016, Briefings Bioinform..

[35]  Lars Konermann,et al.  Hydrogen exchange mass spectrometry for studying protein structure and dynamics. , 2011, Chemical Society reviews.

[36]  Dominik Gront,et al.  BMC Structural Biology BioMed Central , 2007 .

[37]  Pierre Baldi,et al.  Deep architectures for protein contact map prediction , 2012, Bioinform..

[38]  Michael Feig,et al.  What makes it difficult to refine protein models further via molecular dynamics simulations? , 2018, Proteins.

[39]  Lydia E Kavraki,et al.  From coarse‐grain to all‐atom: Toward multiscale analysis of protein landscapes , 2007, Proteins.

[40]  Amedeo Caflisch,et al.  Protein structure-based drug design: from docking to molecular dynamics. , 2018, Current opinion in structural biology.

[41]  O. Schueler‐Furman,et al.  Improved side‐chain modeling for protein–protein docking , 2005, Protein science : a publication of the Protein Society.

[42]  P. Labute proteins STRUCTURE O FUNCTION O BIOINFORMATICS Protonate3D: Assignment of ionization , 2013 .

[43]  Ben Lehner,et al.  Determining protein structures using deep mutagenesis , 2019, Nature Genetics.

[44]  Dominik Gront,et al.  Optimization of protein models , 2012 .

[45]  Roland L. Dunbrack Rotamer libraries in the 21st century. , 2002, Current opinion in structural biology.

[46]  Antonio Rey,et al.  Design of a Rotamer Library for Coarse-Grained Models in Protein-Folding Simulations , 2014, J. Chem. Inf. Model..

[47]  Adam Liwo,et al.  A united-residue force field for off-lattice protein-structure simulations. I. Functional forms and parameters of long-range side-chain interaction potentials from protein crystal data , 1997, J. Comput. Chem..

[48]  Sebastian Doniach,et al.  Small-angle X-ray scattering from RNA, proteins, and protein complexes. , 2007, Annual review of biophysics and biomolecular structure.

[49]  Mateusz Kurcinski,et al.  CABS-dock standalone: a toolbox for flexible protein–peptide docking , 2019, Bioinform..

[50]  M Karplus,et al.  Polar hydrogen positions in proteins: Empirical energy placement and neutron diffraction comparison , 1988, Proteins.

[51]  Wei Lu,et al.  Forging tools for refining predicted protein structures , 2019, Proceedings of the National Academy of Sciences.

[52]  Yang Zhang,et al.  Atomic-level protein structure refinement using fragment-guided molecular dynamics conformation sampling. , 2011, Structure.

[53]  Jianpeng Ma,et al.  OPUS‐Rota: A fast and accurate method for side‐chain modeling , 2008, Protein science : a publication of the Protein Society.

[54]  Valerie Daggett,et al.  New Dynamic Rotamer Libraries: Data-Driven Analysis of Side-Chain Conformational Propensities. , 2016, Structure.

[55]  Glen Eugene Kellogg,et al.  Web application for studying the free energy of binding and protonation states of protein–ligand complexes based on HINT , 2009, J. Comput. Aided Mol. Des..

[56]  P. Payne,et al.  Reconstruction of protein conformations from estimated positions of the Cα coordinates , 1993, Protein science : a publication of the Protein Society.

[57]  C. Camacho,et al.  Modeling side‐chains using molecular dynamics improve recognition of binding region in CAPRI targets , 2005, Proteins.

[58]  Michael Levitt,et al.  Consistent refinement of submitted models at CASP using a knowledge‐based potential , 2010, Proteins.

[59]  G Vriend,et al.  WHAT IF: a molecular modeling and drug design program. , 1990, Journal of molecular graphics.

[60]  Martin Zacharias,et al.  SAXS Data Alone can Generate High-Quality Models of Protein-Protein Complexes. , 2016, Structure.

[61]  Yang Cao,et al.  Improved side-chain modeling by coupling clash-detection guided iterative search with rotamer relaxation , 2011, Bioinform..

[62]  Thomas Lengauer,et al.  IRECS: A new algorithm for the selection of most probable ensembles of side‐chain conformations in protein models , 2007, Protein science : a publication of the Protein Society.

[63]  James W. Murray,et al.  High–quality protein backbone reconstruction from alpha carbons using Gaussian mixture models , 2013, J. Comput. Chem..

[64]  Mona Singh,et al.  Solving and analyzing side-chain positioning problems using linear and integer programming , 2005, Bioinform..

[65]  A C Camproux,et al.  A hidden markov model derived structural alphabet for proteins. , 2004, Journal of molecular biology.

[66]  Pawel Dabrowski-Tumanski,et al.  GapRepairer: a server to model a structural gap and validate it using topological analysis , 2018, Bioinform..

[67]  Jeffrey J. Gray,et al.  Protein-protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations. , 2003, Journal of molecular biology.

[68]  Matthias Rarey,et al.  Protoss: a holistic approach to predict tautomers and protonation states in protein-ligand complexes , 2014, Journal of Cheminformatics.

[69]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[70]  Axel T. Brunger,et al.  X-PLOR Version 3.1: A System for X-ray Crystallography and NMR , 1992 .

[71]  J Andrew McCammon,et al.  Configurational‐bias sampling technique for predicting side‐chain conformations in proteins , 2006, Protein science : a publication of the Protein Society.

[72]  Tom L Blundell,et al.  Advantages of fine-grained side chain conformer libraries. , 2003, Protein engineering.

[73]  Lisa Yan,et al.  The dominant role of side‐chain backbone interactions in structural realization of amino acid code. ChiRotor: A side‐chain prediction algorithm based on side‐chain backbone interactions , 2007, Protein science : a publication of the Protein Society.

[74]  Marc Baaden,et al.  The OPEP protein model: from single molecules, amyloid formation, crowding and hydrodynamics to DNA/RNA systems. , 2014, Chemical Society reviews.

[75]  D. Baker,et al.  Refinement of protein structures into low-resolution density maps using rosetta. , 2009, Journal of molecular biology.

[76]  Yasuhiro Matsunaga,et al.  GENESIS: a hybrid-parallel and multi-scale molecular dynamics simulator with enhanced sampling algorithms for biomolecular and cellular simulations , 2015, Wiley interdisciplinary reviews. Computational molecular science.

[77]  Debswapna Bhattacharya,et al.  refineD: improved protein structure refinement using machine learning based restrained relaxation , 2019, Bioinform..

[78]  N. Grishin,et al.  Side‐chain modeling with an optimized scoring function , 2002, Protein science : a publication of the Protein Society.

[79]  Wei Zhang,et al.  Grow to Fit Molecular Dynamics (G2FMD): an ab initio method for protein side-chain assignment and refinement. , 2006, Protein engineering, design & selection : PEDS.

[80]  Marcelo A. Marti,et al.  CG2AA: backmapping protein coarse-grained structures , 2016, Bioinform..

[81]  Michael Feig,et al.  Sampling of near‐native protein conformations during protein structure refinement using a coarse‐grained model, normal modes, and molecular dynamics simulations , 2007, Proteins.

[82]  A C Camproux,et al.  Hidden Markov model-derived structural alphabet for proteins: the learning of protein local shapes captures sequence specificity. , 2005, Biochimica et biophysica acta.

[83]  Andrzej Kolinski,et al.  Modeling of Disordered Protein Structures Using Monte Carlo Simulations and Knowledge-Based Statistical Force Fields , 2018, International journal of molecular sciences.

[84]  Chaok Seok,et al.  GalaxyRefine: protein structure refinement driven by side-chain repacking , 2013, Nucleic Acids Res..

[85]  A. Kolinski,et al.  SURPASS Low-Resolution Coarse-Grained Protein Modeling. , 2017, Journal of chemical theory and computation.

[86]  Barry Honig,et al.  An assessment of the accuracy of methods for predicting hydrogen positions in protein structures , 2005, Proteins.

[87]  Pierre Baldi,et al.  SIDEpro: A novel machine learning approach for the fast and accurate prediction of side‐chain conformations , 2012, Proteins.

[88]  A. Kolinski Protein modeling and structure prediction with a reduced representation. , 2004, Acta biochimica Polonica.

[89]  Ruth Nussinov,et al.  Principles and Overview of Sampling Methods for Modeling Macromolecular Structure and Dynamics , 2016, PLoS Comput. Biol..

[90]  D. Mobley,et al.  Enhancing Side Chain Rotamer Sampling Using Nonequilibrium Candidate Monte Carlo. , 2018, Journal of chemical theory and computation.

[91]  Bin Li,et al.  Protein docking prediction using predicted protein-protein interface , 2012, BMC Bioinformatics.

[92]  Siewert J Marrink,et al.  Going Backward: A Flexible Geometric Approach to Reverse Transformation from Coarse Grained to Atomistic Models. , 2014, Journal of chemical theory and computation.

[93]  A. Liwo,et al.  A united‐residue force field for off‐lattice protein‐structure simulations. I. Functional forms and parameters of long‐range side‐chain interaction potentials from protein crystal data , 1997 .

[94]  Yang Cao,et al.  RASP: rapid modeling of protein side chain conformations , 2011, Bioinform..

[95]  Badri Adhikari,et al.  CONFOLD2: improved contact-driven ab initio protein structure modeling , 2018, BMC Bioinformatics.

[96]  Roland L. Dunbrack,et al.  Bayesian statistical analysis of protein side‐chain rotamer preferences , 1997, Protein science : a publication of the Protein Society.

[97]  Zhen Li,et al.  Accurate De Novo Prediction of Protein Contact Map by Ultra-Deep Learning Model , 2016, bioRxiv.

[98]  Barry Honig,et al.  Extending the accuracy limits of prediction for side-chain conformations. , 2001 .

[99]  Ilya A Vakser,et al.  Rotamer libraries and probabilities of transition between rotamers for the side chains in protein–protein binding , 2012, Proteins.

[100]  Aleksandra E. Badaczewska-Dawid,et al.  Modeling of Protein Structural Flexibility and Large-Scale Dynamics: Coarse-Grained Simulations and Elastic Network Models , 2018, International journal of molecular sciences.

[101]  Jianpeng Ma,et al.  OPUS-Rota2: An Improved Fast and Accurate Side-chain Modeling Method. , 2019, Journal of chemical theory and computation.

[102]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[103]  Jeffrey Skolnick,et al.  Fast procedure for reconstruction of full‐atom protein models from reduced representations , 2008, J. Comput. Chem..

[104]  Chi Zhang,et al.  Protein loop selection using orientation‐dependent force fields derived by parameter optimization , 2011, Proteins.

[105]  C. Etchebest,et al.  A structural alphabet for local protein structures: Improved prediction methods , 2005, Proteins.

[106]  D. Baker,et al.  Assessing the utility of coevolution-based residue–residue contact predictions in a sequence- and structure-rich era , 2013, Proceedings of the National Academy of Sciences.

[107]  Isaure Chauvot de Beauchêne,et al.  Cryo-EM Data Are Superior to Contact and Interface Information in Integrative Modeling. , 2016, Biophysical journal.

[108]  Roland L. Dunbrack,et al.  proteins STRUCTURE O FUNCTION O BIOINFORMATICS Improved prediction of protein side-chain conformations with SCWRL4 , 2022 .

[109]  Brian Kuhlman,et al.  Advances in protein structure prediction and design , 2019, Nature Reviews Molecular Cell Biology.

[110]  Francesco Luigi Gervasio,et al.  Assessment of the model refinement category in CASP12 , 2018, Proteins.

[111]  R. Larson,et al.  The MARTINI Coarse-Grained Force Field: Extension to Proteins. , 2008, Journal of chemical theory and computation.

[112]  François Stricher,et al.  BriX: a database of protein building blocks for structural analysis, modeling and design , 2010, Nucleic Acids Res..

[113]  Chang-Biau Yang,et al.  Coordinate Refinement on All Atoms of the Protein Backbone with Support Vector Regression , 2016, ICDM.

[114]  E. Alexov,et al.  Combining conformational flexibility and continuum electrostatics for calculating pK(a)s in proteins. , 2002, Biophysical journal.

[115]  Nicholas P. Schafer,et al.  AWSEM-MD: protein structure prediction using coarse-grained physical potentials and bioinformatically based local structure biasing. , 2012, The journal of physical chemistry. B.

[116]  Shayantani Mukherjee,et al.  PRIMO/PRIMONA: A coarse‐grained model for proteins and nucleic acids that preserves near‐atomistic accuracy , 2010, Proteins.

[117]  M. Levitt,et al.  Small libraries of protein fragments model native protein structures accurately. , 2002, Journal of molecular biology.

[118]  Vahid Mirjalili,et al.  Protein structure refinement via molecular‐dynamics simulations: What works and what does not? , 2016, Proteins.

[119]  C. Sander,et al.  Inferring protein 3D structure from deep mutation scans , 2019, Nature Genetics.

[120]  David Baker,et al.  Macromolecular modeling with rosetta. , 2008, Annual review of biochemistry.

[121]  T. A. Jones,et al.  The Uppsala Electron-Density Server. , 2004, Acta crystallographica. Section D, Biological crystallography.

[122]  Gunnar W. Klau,et al.  An exact algorithm for side-chain placement in protein design , 2011, Optim. Lett..

[123]  David Baker,et al.  Protein Structure Prediction Using Rosetta , 2004, Numerical Computer Methods, Part D.

[124]  R. Lavery,et al.  PaLaCe: A Coarse-Grain Protein Model for Studying Mechanical Properties. , 2013, Journal of chemical theory and computation.

[125]  Jianpeng Ma,et al.  OPUS‐CSF: A C‐atom‐based scoring function for ranking protein structural models , 2017, bioRxiv.

[126]  Ben M. Webb,et al.  Comparative Protein Structure Modeling Using MODELLER , 2007, Current protocols in protein science.

[127]  J. Skolnick,et al.  An Efficient Monte Carlo Model of Protein Chains. Modeling the Short-Range Correlations between Side Group Centers of Mass , 1998 .

[128]  Berk Hess,et al.  GROMACS 3.0: a package for molecular simulation and trajectory analysis , 2001 .

[129]  Jianpeng Ma,et al.  OPUS-DOSP: A Distance- and Orientation-Dependent All-Atom Potential Derived from Side-Chain Packing. , 2017, Journal of molecular biology.

[130]  Yang Zhang,et al.  REMO: A new protocol to refine full atomic protein models from C‐alpha traces by optimizing hydrogen‐bonding networks , 2009, Proteins.

[131]  Georgios A. Pavlopoulos,et al.  Protein structure determination using metagenome sequence data , 2017, Science.

[132]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[133]  C Kooperberg,et al.  Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. , 1997, Journal of molecular biology.

[134]  U. Ryde,et al.  Refinement of protein structures using a combination of quantum-mechanical calculations with neutron and X-ray crystallographic data , 2019, Acta crystallographica. Section D, Structural biology.

[135]  Eran Eyal,et al.  Importance of solvent accessibility and contact surfaces in modeling side‐chain conformations in proteins , 2004, J. Comput. Chem..

[136]  C. Pace,et al.  Forces stabilizing proteins , 2014, FEBS letters.

[137]  Yang Zhang,et al.  The I-TASSER Suite: protein structure and function prediction , 2014, Nature Methods.

[138]  Marcin J. Skwark,et al.  PconsC: combination of direct information methods and alignments improves contact prediction , 2013, Bioinform..

[139]  Chi Zhang,et al.  Fast and accurate prediction of protein side-chain conformations , 2011, Bioinform..

[140]  Jens Meiler,et al.  RosettaScripts: A Scripting Language Interface to the Rosetta Macromolecular Modeling Suite , 2011, PloS one.

[141]  Adrian A Canutescu,et al.  Access the most recent version at doi: 10.1110/ps.03154503 References , 2003 .

[142]  Laurent Emmanuel Dardenne,et al.  Critical Features of Fragment Libraries for Protein Structure Prediction , 2017, PloS one.

[143]  Marcin J. Skwark,et al.  PconsFold: improved contact predictions improve protein models , 2014, Bioinform..

[144]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[145]  J. Tanner,et al.  Determination of protein oligomeric structure from small‐angle X‐ray scattering , 2018, Protein science : a publication of the Protein Society.

[146]  Adam Liwo,et al.  UNRES server for physics-based coarse-grained simulations and prediction of protein structure, dynamics and thermodynamics , 2018, Nucleic Acids Res..

[147]  Lenna X. Peterson,et al.  Assessment of protein side‐chain conformation prediction methods in different residue environments , 2014, Proteins.

[148]  Shoji Takada,et al.  Reconstruction of Atomistic Structures from Coarse-Grained Models for Protein-DNA Complexes. , 2018, Journal of chemical theory and computation.

[149]  Yang Zhang,et al.  HAAD: A Quick Algorithm for Accurate Prediction of Hydrogen Atoms in Protein Structures , 2009, PloS one.

[150]  Amir Harel,et al.  SPRINT: side-chain prediction inference toolbox for multistate protein design , 2010, Bioinform..

[151]  D. Baker,et al.  The coming of age of de novo protein design , 2016, Nature.

[153]  Yaoqi Zhou,et al.  Protein side chain modeling with orientation‐dependent atomic force fields derived by series expansions , 2011, J. Comput. Chem..

[154]  Jiye Shi,et al.  Antibody side chain conformations are position‐dependent , 2018, Proteins.

[155]  A Joshua Wand,et al.  Improved side‐chain prediction accuracy using an ab initio potential energy function and a very large rotamer library , 2004, Protein science : a publication of the Protein Society.

[156]  Andrzej Kolinski,et al.  Protein fragment reconstruction using various modeling techniques , 2003, J. Comput. Aided Mol. Des..

[157]  Ben M. Webb,et al.  Comparative Protein Structure Modeling Using MODELLER , 2016, Current protocols in bioinformatics.

[158]  Anurag Bagaria,et al.  NMR-based automated protein structure determination. , 2017, Archives of biochemistry and biophysics.

[159]  Thomas Simonson,et al.  Computational sidechain placement and protein mutagenesis with implicit solvent models , 2007, Proteins.

[160]  C. Etchebest,et al.  Bayesian probabilistic approach for predicting backbone structures in terms of protein blocks , 2000, Proteins.

[161]  Dominik Gront,et al.  Backbone building from quadrilaterals: A fast and accurate algorithm for protein backbone reconstruction from alpha carbon coordinates , 2007, J. Comput. Chem..

[162]  S. L. Mayo,et al.  Conformational splitting: A more powerful criterion for dead‐end elimination , 2000, J. Comput. Chem..