Encoding of configural regularity in the human visual system.

The visual system is very efficient in encoding stimulus properties by utilizing available regularities in the inputs. To explore the underlying encoding strategies during visual information processing, we presented participants with two-line configurations that varied in the amount of configural regularity (or degrees of freedom in the relative positioning of the two lines) in a fMRI experiment. Configural regularity ranged from a generic configuration to stimuli resembling an "L" (i.e., a right-angle L-junction), a "T" (i.e., a right-angle midpoint T-junction), or a "+",-the latter being the most regular stimulus. We found that the response strength in the shape-selective lateral occipital area was consistently lower for a higher degree of regularity in the stimuli. In the second experiment, using multivoxel pattern analysis, we further show that regularity is encoded in terms of the fMRI signal strength but not in the distributed pattern of responses. Finally, we found that the results of these experiments could not be accounted for by low-level stimulus properties and are distinct from norm-based encoding. Our results suggest that regularity plays an important role in stimulus encoding in the ventral visual processing stream.

[1]  A. O'Toole,et al.  Prototype-referenced shape encoding revealed by high-level aftereffects , 2001, Nature Neuroscience.

[2]  Johan Wagemans,et al.  Development of differential sensitivity for shape changes resulting from linear and nonlinear planar transformations , 2011, i-Perception.

[3]  W. R. Garner The Processing of Information and Structure , 1974 .

[4]  Jonas Kubilius,et al.  A framework for streamlining research workflow in neuroscience and psychology , 2014, Front. Neuroinform..

[5]  I. Biederman,et al.  Dynamic binding in a neural network for shape recognition. , 1992, Psychological review.

[6]  F. Attneave Applications of information theory to psychology: A summary of basic concepts, methods, and results. , 1961 .

[7]  Maria Alejandra Gonzalez-Perez,et al.  Conceptual and Theoretical Foundations , 2014 .

[8]  M. Masson,et al.  Using confidence intervals in within-subject designs , 1994, Psychonomic bulletin & review.

[9]  I. Biederman Recognition-by-components: a theory of human image understanding. , 1987, Psychological review.

[10]  Johan Wagemans,et al.  Dynamic prototypicality effects in visual search. , 2011, Journal of experimental psychology. General.

[11]  C. Gilbert,et al.  On a common circle: natural scenes and Gestalt rules. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Richard D. Morey,et al.  Confidence Intervals from Normalized Data: A correction to Cousineau (2005) , 2008 .

[13]  Jacob Feldman,et al.  Regularity‐based Perceptual Grouping , 1997, Comput. Intell..

[14]  M. Giese,et al.  Norm-based face encoding by single neurons in the monkey inferotemporal cortex , 2006, Nature.

[15]  Karl J. Friston The free-energy principle: a rough guide to the brain? , 2009, Trends in Cognitive Sciences.

[16]  Jacob Feldman,et al.  Perceptual Grouping by Selection of a Logically Minimal Model , 2003, International Journal of Computer Vision.

[17]  Jacob Feldman,et al.  Formation of visual “objects” in the early computation of spatial relations , 2007, Perception & psychophysics.

[18]  R. Andersen,et al.  Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[19]  Eero P. Simoncelli,et al.  Efficient Coding of Spatial Information in the Primate Retina , 2012, The Journal of Neuroscience.

[20]  I Biederman,et al.  To what extent can matching algorithms based on direct outputs of spatial filters account for human object recognition? , 1996, Spatial vision.

[21]  David D. Cox,et al.  Opinion TRENDS in Cognitive Sciences Vol.11 No.8 Untangling invariant object recognition , 2022 .

[22]  Alexei A. Efros,et al.  What makes Paris look like Paris? , 2015, Commun. ACM.

[23]  J. Hegdé,et al.  A comparative study of shape representation in macaque visual areas v2 and v4. , 2007, Cerebral cortex.

[24]  Russell A. Epstein,et al.  Decoding the Representation of Multiple Simultaneous Objects in Human Occipitotemporal Cortex , 2009, Current Biology.

[25]  G. Rhodes,et al.  Adaptive norm-based coding of facial identity , 2006, Vision Research.

[26]  Peter A. van der Helm Simplicity in Vision: A Multidisciplinary Account of Perceptual Organization , 2014 .

[27]  Jaakko Hintikka,et al.  On the Logic of Perception , 1969 .

[28]  Jacob Feldman,et al.  Constructing perceptual categories , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[29]  J. Feldman,et al.  Bayes and the Simplicity Principle in Perception Simplicity versus Likelihood Principles in Perception , 2022 .

[30]  H. B. Barlow,et al.  Possible Principles Underlying the Transformations of Sensory Messages , 2012 .

[31]  Irving Biederman,et al.  Greater sensitivity to nonaccidental than metric changes in the relations between simple shapes in the lateral occipital cortex , 2012, NeuroImage.

[32]  Emanuel Leeuwenberg,et al.  Structural Information Theory: The Simplicity of Visual Form , 2012 .

[33]  Eero P. Simoncelli,et al.  Natural image statistics and neural representation. , 2001, Annual review of neuroscience.

[34]  Jonathan W. Peirce,et al.  PsychoPy—Psychophysics software in Python , 2007, Journal of Neuroscience Methods.

[35]  R van Lier,et al.  Integrating Global and Local Aspects of Visual Occlusion , 1994, Perception.

[36]  Nikolaus Kriegeskorte,et al.  Comparison of multivariate classifiers and response normalizations for pattern-information fMRI , 2010, NeuroImage.

[37]  Joachim M. Buhmann,et al.  Distortion Invariant Object Recognition in the Dynamic Link Architecture , 1993, IEEE Trans. Computers.

[38]  J. R. Pomerantz,et al.  A century of Gestalt psychology in visual perception: II. Conceptual and theoretical foundations. , 2012, Psychological bulletin.

[39]  Stefan Pollmann,et al.  PyMVPA: a Python Toolbox for Multivariate Pattern Analysis of fMRI Data , 2009, Neuroinformatics.

[40]  David C. Van Essen,et al.  Application of Information Technology: An Integrated Software Suite for Surface-based Analyses of Cerebral Cortex , 2001, J. Am. Medical Informatics Assoc..

[41]  Hans Op de Beeck,et al.  The role of temporal context in norm-based encoding of faces , 2014 .

[42]  Jonathan Westley Peirce,et al.  Neuroinformatics Original Research Article Generating Stimuli for Neuroscience Using Psychopy , 2022 .

[43]  Denis Cousineau,et al.  Confidence intervals in within-subject designs: A simpler solution to Loftus and Masson's method , 2005 .

[44]  David D. Cox,et al.  What response properties do individual neurons need to underlie position and clutter "invariant" object recognition? , 2009, Journal of neurophysiology.

[45]  Johan Wagemans,et al.  Asymmetries in Stimulus Comparisons by Monkey and Man , 2003, Current Biology.

[46]  Johan Wagemans,et al.  Dynamic Norm-based Encoding for Unfamiliar Shapes in Human Visual Cortex , 2011, Journal of Cognitive Neuroscience.

[47]  Irving Biederman,et al.  The neural basis for shape preferences , 2011, Vision Research.

[48]  J L Gallant,et al.  Sparse coding and decorrelation in primary visual cortex during natural vision. , 2000, Science.

[49]  F. Attneave Some informational aspects of visual perception. , 1954, Psychological review.

[50]  S. Palmer,et al.  A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure-ground organization. , 2012, Psychological bulletin.

[51]  S. Edelman,et al.  Human Brain Mapping 6:316–328(1998) � A Sequence of Object-Processing Stages Revealed by fMRI in the Human Occipital Lobe , 2022 .

[52]  Hans P Op de Beeck,et al.  The role of temporal context in norm-based encoding of faces , 2014, Psychonomic bulletin & review.

[53]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[54]  Jeffrey S. Perry,et al.  Edge co-occurrence in natural images predicts contour grouping performance , 2001, Vision Research.

[55]  C. Connor,et al.  Neural representations for object perception: structure, category, and adaptive coding. , 2011, Annual review of neuroscience.

[56]  I. Biederman,et al.  Representation of regular and irregular shapes in macaque inferotemporal cortex. , 2005, Cerebral cortex.

[57]  I. Biederman,et al.  Inferior Temporal Neurons Show Greater Sensitivity to Nonaccidental than to Metric Shape Differences , 2001, Journal of Cognitive Neuroscience.