Lectures on Algorithmic Game Theory

[1]  Bernd Gärtner,et al.  Understanding and using linear programming , 2007, Universitext.

[2]  Eitan Zemel,et al.  Nash and correlated equilibria: Some complexity considerations , 1989 .

[3]  Martin Gairing,et al.  Exact Price of Anarchy for Polynomial Congestion Games , 2006, SIAM J. Comput..

[4]  Christos H. Papadimitriou,et al.  Computing pure nash equilibria in graphical games via markov random fields , 2006, EC '06.

[5]  C. B. Mcguire,et al.  Studies in the Economics of Transportation , 1958 .

[6]  R. Rosenthal A class of games possessing pure-strategy Nash equilibria , 1973 .

[7]  Dietrich Braess,et al.  Über ein Paradoxon aus der Verkehrsplanung , 1968, Unternehmensforschung.

[8]  J. Nash,et al.  NON-COOPERATIVE GAMES , 1951, Classics in Game Theory.

[9]  A. C. Pigou Economics of welfare , 1920 .

[10]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[11]  Berthold Vöcking,et al.  Pure Nash equilibria in player-specific and weighted congestion games , 2009, Theor. Comput. Sci..

[12]  J. G. Wardrop,et al.  Some Theoretical Aspects of Road Traffic Research , 1952 .

[13]  Tim Roughgarden,et al.  Weighted Congestion Games: The Price of Anarchy, Universal Worst-Case Examples, and Tightness , 2014, TEAC.

[14]  Christos H. Papadimitriou,et al.  On the Complexity of the Parity Argument and Other Inefficient Proofs of Existence , 1994, J. Comput. Syst. Sci..

[15]  Yoav Shoham,et al.  Fast and Compact: A Simple Class of Congestion Games , 2005, AAAI.

[16]  A. Peressini,et al.  The Mathematics Of Nonlinear Programming , 1988 .

[17]  Tim Roughgarden,et al.  Selfish Routing , 2002 .

[18]  Vincent Conitzer,et al.  Complexity Results about Nash Equilibria , 2002, IJCAI.

[19]  Rolf H. Möhring,et al.  Characterizing the Existence of Potential Functions in Weighted Congestion Games , 2011, Theory of Computing Systems.

[20]  Haim Brezis Review: David Kinderlehrer and Guido Stampacchia, An introduction to variational inequalities and their applications , 1982 .

[21]  José R. Correa,et al.  Sloan School of Management Working Paper 4319-03 June 2003 Selfish Routing in Capacitated Networks , 2022 .

[22]  Lasse Kliemann,et al.  The price of anarchy in nonatomic consumption‐relevance congestion games , 2013, Networks.

[23]  Mike Smith,et al.  The existence, uniqueness and stability of traffic equilibria , 1979 .

[24]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[25]  T. Koopmans,et al.  Studies in the Economics of Transportation. , 1956 .

[26]  Berthold Vöcking Congestion Games: Optimization in Competition , 2006, ACiD.

[27]  Xi Chen,et al.  Computing Nash Equilibria: Approximation and Smoothed Complexity , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[28]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[29]  Christos H. Papadimitriou,et al.  The complexity of pure Nash equilibria , 2004, STOC '04.

[30]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[31]  I. Milchtaich,et al.  Congestion Games with Player-Specific Payoff Functions , 1996 .

[32]  Mark Voorneveld,et al.  Congestion Games and Potentials Reconsidered , 1999, IGTR.

[33]  Paul G. Spirakis,et al.  Selfish unsplittable flows , 2005, Theor. Comput. Sci..

[34]  Paul W. Goldberg,et al.  The complexity of computing a Nash equilibrium , 2006, STOC '06.

[35]  Tim Roughgarden,et al.  Weighted Congestion Games: Price of Anarchy, Universal Worst-Case Examples, and Tightness , 2010, ESA.

[36]  Berthold Vöcking,et al.  Tight bounds for worst-case equilibria , 2002, SODA '02.

[37]  Evangelos Markakis,et al.  New algorithms for approximate Nash equilibria in bimatrix games , 2007, Theor. Comput. Sci..

[38]  A. Nagurney Network Economics: A Variational Inequality Approach , 1992 .

[39]  Tim Roughgarden,et al.  Bounding the inefficiency of equilibria in nonatomic congestion games , 2004, Games Econ. Behav..

[40]  Anna Nagurney,et al.  On a Paradox of Traffic Planning , 2005, Transp. Sci..

[41]  Paul G. Spirakis,et al.  Efficient Algorithms for Constant Well Supported Approximate Equilibria in Bimatrix Games , 2007, ICALP.

[42]  Mihalis Yannakakis,et al.  Simple Local Search Problems That are Hard to Solve , 1991, SIAM J. Comput..

[43]  Ariel Rubinstein,et al.  A Course in Game Theory , 1995 .