Incrementally reducing dispersion by increasing Voronoi bias in RRTs

We discuss theoretical and practical issues related to using Rapidly-Exploring Random Trees (RRTs) to incrementally reduce dispersion in the configuration space. The original RRT planners use randomization to create Voronoi bias, which causes the search trees to rapidly explore the state space. We introduce RRT-like planners based on exact Voronoi diagram computation, as well as sampling-based algorithms which approximate their behavior. We give experimental results illustrating how the new algorithms explore the configuration space and how they compare with existing RRT algorithms. Initial results show that our algorithms are advantageous compared to existing RRTs, especially with respect to the number of collision checks and nodes in the search tree.

[1]  Steven M. LaValle,et al.  Efficient nearest neighbor searching for motion planning , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[2]  Ming C. Lin,et al.  Constraint-Based Motion Planning Using Voronoi Diagrams , 2002, WAFR.

[3]  Dinesh Manocha,et al.  Randomized Path Planning for a Rigid Body Based on Hardware Accelerated Voronoi Sampling , 1999 .

[4]  Steven M. LaValle,et al.  RRT-connect: An efficient approach to single-query path planning , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[5]  Steven M. LaValle,et al.  Steps toward derandomizing RRTs , 2004, Proceedings of the Fourth International Workshop on Robot Motion and Control (IEEE Cat. No.04EX891).

[6]  Steven M. LaValle,et al.  Quasi-randomized path planning , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[7]  Jean-Claude Latombe,et al.  Robot Motion Planning: A Distributed Representation Approach , 1991, Int. J. Robotics Res..

[8]  Steven M. LaValle,et al.  On the Relationship between Classical Grid Search and Probabilistic Roadmaps , 2004, Int. J. Robotics Res..

[9]  Rajeev Motwani,et al.  Path Planning in Expansive Configuration Spaces , 1999, Int. J. Comput. Geom. Appl..

[10]  Nancy M. Amato,et al.  MAPRM: a probabilistic roadmap planner with sampling on the medial axis of the free space , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[11]  Lydia E. Kavraki,et al.  Probabilistic roadmaps for path planning in high-dimensional configuration spaces , 1996, IEEE Trans. Robotics Autom..

[12]  Pierre Bessière,et al.  The Ariadne's Clew Algorithm , 1993, J. Artif. Intell. Res..

[13]  Steven M. LaValle,et al.  Rapidly-Exploring Random Trees: Progress and Prospects , 2000 .

[14]  泰義 横小路,et al.  IEEE International Conference on Robotics and Automation , 1992 .

[15]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[16]  Steven M. LaValle,et al.  Incremental low-discrepancy lattice methods for motion planning , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[17]  Vipin Kumar,et al.  A parallel formulation of informed randomized search for robot motion planning problems , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[18]  Mark H. Overmars,et al.  A Comparative Study of Probabilistic Roadmap Planners , 2002, WAFR.

[19]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[20]  Steven M. LaValle,et al.  Current Issues in Sampling-Based Motion Planning , 2005, ISRR.

[21]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .