Adaptation of the human visual system to the statistics of letters and line configurations

By adulthood, literate humans have been exposed to millions of visual scenes and pages of text. Does the human visual system become attuned to the statistics of its inputs? Using functional magnetic resonance imaging, we examined whether the brain responses to line configurations are proportional to their natural-scene frequency. To further distinguish prior cortical competence from adaptation induced by learning to read, we manipulated whether the selected configurations formed letters and whether they were presented on the horizontal meridian, the familiar location where words usually appear, or on the vertical meridian. While no natural-scene frequency effect was observed, we observed letter-status and letter frequency effects on bilateral occipital activation, mainly for horizontal stimuli. The findings suggest a reorganization of the visual pathway resulting from reading acquisition under genetic and connectional constraints. Even early retinotopic areas showed a stronger response to letters than to rotated versions of the same shapes, suggesting an early visual tuning to large visual features such as letters.

[1]  R. F Hess,et al.  Contour integration and cortical processing , 2003, Journal of Physiology-Paris.

[2]  Marcin Szwed,et al.  Effects of Literacy in Early Visual and Occipitotemporal Areas of Chinese and French Readers , 2014, Journal of Cognitive Neuroscience.

[3]  G. F. Cooper,et al.  Development of the Brain depends on the Visual Environment , 1970, Nature.

[4]  James J. DiCarlo,et al.  How Does the Brain Solve Visual Object Recognition? , 2012, Neuron.

[5]  Dale Purves,et al.  Range image statistics can explain the anomalous perception of length , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[6]  S. Dumoulin,et al.  The Relationship between Cortical Magnification Factor and Population Receptive Field Size in Human Visual Cortex: Constancies in Cortical Architecture , 2011, The Journal of Neuroscience.

[7]  A. Yuille,et al.  Object perception as Bayesian inference. , 2004, Annual review of psychology.

[8]  Aaron R. Seitz,et al.  A common framework for perceptual learning , 2007, Current Opinion in Neurobiology.

[9]  Boris New,et al.  Une base de données lexicales du français contemporain sur internet: LEXIQUE , 2001 .

[10]  Mariano Sigman,et al.  Hierarchical Coding of Letter Strings in the Ventral Stream: Dissecting the Inner Organization of the Visual Word-Form System , 2007, Neuron.

[11]  E. Brunswik Perception and the Representative Design of Psychological Experiments , 1957 .

[12]  Thomas Serre,et al.  A feedforward architecture accounts for rapid categorization , 2007, Proceedings of the National Academy of Sciences.

[13]  Aaron R. Seitz,et al.  The phenomenon of task-irrelevant perceptual learning , 2009, Vision Research.

[14]  Charles E Connor,et al.  Underlying principles of visual shape selectivity in posterior inferotemporal cortex , 2004, Nature Neuroscience.

[15]  D. Knill,et al.  The Bayesian brain: the role of uncertainty in neural coding and computation , 2004, Trends in Neurosciences.

[16]  Jean Bennett,et al.  Lateral Connectivity and Contextual Interactions in Macaque Primary Visual Cortex , 2002, Neuron.

[17]  S. Dehaene,et al.  Language-specific tuning of visual cortex? Functional properties of the Visual Word Form Area. , 2002, Brain : a journal of neurology.

[18]  Maximilian Riesenhuber,et al.  Individual Variability in Location Impacts Orthographic Selectivity in the “Visual Word Form Area” , 2013, The Journal of Neuroscience.

[19]  Jeffrey R. Binder,et al.  Tuning of the human left fusiform gyrus to sublexical orthographic structure , 2006, NeuroImage.

[20]  S. Dehaene,et al.  The unique role of the visual word form area in reading , 2011, Trends in Cognitive Sciences.

[21]  Eric T. Carlson,et al.  Medial Axis Shape Coding in Macaque Inferotemporal Cortex , 2012, Neuron.

[22]  Marcin Szwed,et al.  Reading Acquisition Enhances an Early Visual Process of Contour Integration , 2022 .

[23]  Jeffrey M. Yau,et al.  Curvature processing dynamics in macaque area V4. , 2013, Cerebral cortex.

[24]  M. Tagamets,et al.  A Parametric Approach to Orthographic Processing in the Brain: An fMRI Study , 2000, Journal of Cognitive Neuroscience.

[25]  J B Poline,et al.  Letter Binding and Invariant Recognition of Masked Words , 2004, Psychological science.

[26]  Wu Li,et al.  Adaptive shape processing in primary visual cortex , 2011, Proceedings of the National Academy of Sciences.

[27]  M. Sigman,et al.  Opinion TRENDS in Cognitive Sciences Vol.9 No.7 July 2005 The neural code for written words: a proposal , 2022 .

[28]  G. Glover,et al.  Retinotopic organization in human visual cortex and the spatial precision of functional MRI. , 1997, Cerebral cortex.

[29]  R. Shepard Perceptual-cognitive universals as reflections of the world , 1994, Psychonomic bulletin & review.

[30]  C. Gilbert,et al.  Brain States: Top-Down Influences in Sensory Processing , 2007, Neuron.

[31]  K. Folta,et al.  Neural fine tuning during Vernier acuity training? , 2003, Vision Research.

[32]  S. Hochstein,et al.  The reverse hierarchy theory of visual perceptual learning , 2004, Trends in Cognitive Sciences.

[33]  József Fiser,et al.  Spontaneous Cortical Activity Reveals Hallmarks of an Optimal Internal Model of the Environment , 2011, Science.

[34]  S. Dehaene,et al.  Literacy breaks mirror invariance for visual stimuli: a behavioral study with adult illiterates. , 2014, Journal of experimental psychology. General.

[35]  I. Biederman,et al.  Priming contour-deleted images: Evidence for intermediate representations in visual object recognition , 1991, Cognitive Psychology.

[36]  Stanislas Dehaene,et al.  Cortical networks for vision and language in dyslexic and normal children of variable socio-economic status , 2012, NeuroImage.

[37]  C. Gilbert,et al.  Perceptual learning and top-down influences in primary visual cortex , 2004, Nature Neuroscience.

[38]  Andreas Kleinschmidt,et al.  Specialization for written words over objects in the visual cortex , 2011, NeuroImage.

[39]  Stephen M. Smith,et al.  Multiplexed Echo Planar Imaging for Sub-Second Whole Brain FMRI and Fast Diffusion Imaging , 2010, PloS one.

[40]  Paul J. Laurienti,et al.  An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets , 2003, NeuroImage.

[41]  Aaron R. Seitz,et al.  Psychophysics: Is subliminal learning really passive? , 2003, Nature.

[42]  Laurie S. Glezer,et al.  Evidence for Highly Selective Neuronal Tuning to Whole Words in the “Visual Word Form Area” , 2009, Neuron.

[43]  Scott L. Brincat,et al.  Dynamic Shape Synthesis in Posterior Inferotemporal Cortex , 2006, Neuron.

[44]  T. Wiesel,et al.  Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[45]  S. Ullman Object recognition and segmentation by a fragment-based hierarchy , 2007, Trends in Cognitive Sciences.

[46]  Keiji Tanaka Columns for complex visual object features in the inferotemporal cortex: clustering of cells with similar but slightly different stimulus selectivities. , 2003, Cerebral cortex.

[47]  Qiong Zhang,et al.  The Structures of Letters and Symbols throughout Human History Are Selected to Match Those Found in Objects in Natural Scenes , 2006, The American Naturalist.

[48]  J B Poline,et al.  Cerebral mechanisms of word masking and unconscious repetition priming , 2001, Nature Neuroscience.

[49]  Olivier Faugeras,et al.  Human Retinotopic Mapping Using fMRI , 2006 .

[50]  R. Held,et al.  MOVEMENT-PRODUCED STIMULATION IN THE DEVELOPMENT OF VISUALLY GUIDED BEHAVIOR. , 1963, Journal of comparative and physiological psychology.

[51]  Orrin Devinsky,et al.  Sequential then Interactive Processing of Letters and Words in the Left Fusiform Gyrus , 2012, Nature Communications.

[52]  Steen Moeller,et al.  Evaluation of slice accelerations using multiband echo planar imaging at 3T , 2013, NeuroImage.

[53]  C. Gilbert,et al.  Contour Saliency in Primary Visual Cortex , 2006, Neuron.

[54]  Steen Moeller,et al.  Multiband multislice GE‐EPI at 7 tesla, with 16‐fold acceleration using partial parallel imaging with application to high spatial and temporal whole‐brain fMRI , 2010, Magnetic resonance in medicine.

[55]  C. Gilbert,et al.  Learning to see: experience and attention in primary visual cortex , 2001, Nature Neuroscience.

[56]  Takeo Watanabe,et al.  Advances in visual perceptual learning and plasticity , 2010, Nature Reviews Neuroscience.

[57]  Simon B. Eickhoff,et al.  A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data , 2005, NeuroImage.

[58]  N. Tzourio-Mazoyer,et al.  Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain , 2002, NeuroImage.

[59]  A. Schleicher,et al.  Cytoarchitectonical analysis and probabilistic mapping of two extrastriate areas of the human posterior fusiform gyrus , 2012, Brain Structure and Function.

[60]  C. Gilbert,et al.  The Neural Basis of Perceptual Learning , 2001, Neuron.

[61]  Eero P. Simoncelli,et al.  Natural image statistics and neural representation. , 2001, Annual review of neuroscience.

[62]  M. Bear,et al.  Instructive Effect of Visual Experience in Mouse Visual Cortex , 2006, Neuron.

[63]  C. Gilbert,et al.  Learning to Link Visual Contours , 2008, Neuron.

[64]  Jean-Luc Anton,et al.  Region of interest analysis using an SPM toolbox , 2010 .

[65]  C. Price,et al.  The Interactive Account of ventral occipitotemporal contributions to reading , 2011, Trends in Cognitive Sciences.

[66]  C. Furmanski,et al.  An oblique effect in human primary visual cortex , 2000, Nature Neuroscience.

[67]  Mareike Grotheer,et al.  Repetition Probability Effects Depend on Prior Experiences , 2014, The Journal of Neuroscience.

[68]  D. Heeger,et al.  Two Retinotopic Visual Areas in Human Lateral Occipital Cortex , 2006, The Journal of Neuroscience.

[69]  I. Biederman Recognition-by-components: a theory of human image understanding. , 1987, Psychological review.

[70]  S. Dehaene,et al.  How Learning to Read Changes the Cortical Networks for Vision and Language , 2010, Science.

[71]  T. Nazir,et al.  Reading habits, perceptual learning, and recognition of printed words , 2004, Brain and Language.

[72]  Dale Purves,et al.  Natural scene statistics as the universal basis of color context effects , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[73]  José E. Náñez,et al.  Greater plasticity in lower-level than higher-level visual motion processing in a passive perceptual learning task , 2002, Nature Neuroscience.

[74]  Zoe Kourtzi,et al.  Learning-dependent plasticity with and without training in the human brain , 2010, Proceedings of the National Academy of Sciences.

[75]  W. Geisler Visual perception and the statistical properties of natural scenes. , 2008, Annual review of psychology.

[76]  S. Dehaene Reading in the Brain: The New Science of How We Read , 2009 .

[77]  Stanislas Dehaene,et al.  Reading normal and degraded words: Contribution of the dorsal and ventral visual pathways , 2008, NeuroImage.

[78]  C. Gilbert,et al.  Top-Down Reorganization of Activity in the Visual Pathway after Learning a Shape Identification Task , 2005, Neuron.

[79]  Eero P. Simoncelli,et al.  Cardinal rules: Visual orientation perception reflects knowledge of environmental statistics , 2011, Nature Neuroscience.

[80]  Edmund T. Rolls,et al.  Invariant visual object recognition: A model, with lighting invariance , 2006, Journal of Physiology-Paris.