Approaching Dual Quaternions From Matrix Algebra

Dual quaternions give a neat and succinct way to encapsulate both translations and rotations into a unified representation that can easily be concatenated and interpolated. Unfortunately, the combination of quaternions and dual numbers seems quite abstract and somewhat arbitrary when approached for the first time. Actually, the use of quaternions or dual numbers separately is already seen as a break in mainstream robot kinematics, which is based on homogeneous transformations. This paper shows how dual quaternions arise in a natural way when approximating 3-D homogeneous transformations by 4-D rotation matrices. This results in a seamless presentation of rigid-body transformations based on matrices and dual quaternions, which permits building intuition about the use of quaternions and their generalizations.

[1]  Stephen Mann,et al.  Geometric Algebra: A computational framework for geometrical applications Part 1 , 2002, IEEE Computer Graphics and Applications.

[2]  Andrew P. Murray,et al.  A Distance Metric for Finite Sets of Rigid-Body Displacements via the Polar Decomposition , 2007 .

[3]  M. Shuster A survey of attitude representation , 1993 .

[4]  Joel L. Weiner,et al.  Quaternions and Rotations in 피4 , 2005 .

[5]  Andrew J. Hanson,et al.  Visualizing quaternions , 2005, SIGGRAPH Courses.

[6]  Ron Goldman Rethinking Quaternions: Theory and Computation , 2010 .

[7]  Arthur Buchheim,et al.  A Memoir on Biquaternions , 1885 .

[8]  Jana Fuhrmann,et al.  The collected mathematical papers , 1896 .

[9]  Par Gustave Juvet Les rotations de l'espace euclidien à quatre dimensions, leur expression au moyen des nombres de Clifford et leurs relations avec la théorie des spineurs , 1935 .

[10]  A. T. Yang,et al.  Application of Dual-Number Matrices to the Inverse Kinematics Problem of Robot Manipulators , 1985 .

[11]  Ian S. Fischer,et al.  Dual-Number Methods in Kinematics, Statics and Dynamics , 1998 .

[12]  J. Michael McCarthy,et al.  Introduction to theoretical kinematics , 1990 .

[13]  P. Larochelle,et al.  Planar Motion Synthesis Using an Approximate Bi-Invariant Metric , 1995 .

[14]  John J. Craig,et al.  Introduction to Robotics Mechanics and Control , 1986 .

[15]  Ron Goldman,et al.  Rethinking Quaternions , 2010, Rethinking Quaternions.

[16]  John J. Craig,et al.  Introduction to robotics - mechanics and control (2. ed.) , 1989 .

[17]  Frank L. Hitchcock An Analysis of Rotations in Euclidean Four-Space by Sedenions , 1930 .

[18]  J. Pujol,et al.  Hamilton, Rodrigues, Gauss, Quaternions, and Rotations: a Historical Reassessment , 2012 .

[19]  I. M. Yaglom,et al.  Complex Numbers in Geometry , 1969, The Mathematical Gazette.

[20]  A. ten Kate,et al.  Dirac Algebra and the Six‐Dimensional Lorentz Group , 1968 .

[21]  N. Rosen Note on the General Lorentz Transformation , 1930 .

[22]  J. Angeles The application of dual algebra to kinematic analysis , 1998 .

[23]  Marco Ceccarelli,et al.  Distinguished figures in mechanism and machine science : their contributions and legacies , 2007 .

[24]  Arthur Cayley The Collected Mathematical Papers: Recherches Ultérieures sur les Déterminants gauches , 2009 .

[25]  Robert B. Fisher,et al.  Estimating 3-D rigid body transformations: a comparison of four major algorithms , 1997, Machine Vision and Applications.

[26]  J. McCarthy,et al.  Dimensional Synthesis of Robots using a Double Quaternion Formulation of the Workspace , 2000 .

[27]  S. Qiao,et al.  Inverse kinematic analysis of the general 6R serial manipulators based on double quaternions , 2010 .

[28]  OLIVER HEAVISIDE Vectors Versus Quaternions , 1893, Nature.

[29]  Janusz,et al.  Geometrical Methods in Robotics , 1996, Monographs in Computer Science.

[30]  S. Altmann,et al.  Hamilton, Rodrigues, and the Quaternion Scandal , 1989 .

[31]  Jack B. Kuipers,et al.  Quaternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace and Virtual Reality , 2002 .

[32]  Mark Whitty,et al.  Robotics, Vision and Control. Fundamental Algorithms in MATLAB , 2012 .

[33]  A. T. Yang,et al.  Application of Dual-Number Quaternion Algebra to the Analysis of Spatial Mechanisms , 1964 .

[34]  P. Lounesto Clifford Algebras and Spinors , 1997 .

[35]  John Stillwell,et al.  Naive Lie Theory , 2008 .

[36]  J. Michael McCarthy,et al.  A metric for spatial displacement using biquaternions on SO(4) , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[37]  Jorge Angeles,et al.  Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms , 1995 .

[38]  Joseph K. Davidson,et al.  Robots and Screw Theory: Applications of Kinematics and Statics to Robotics , 2004 .

[39]  A. C. Robinson,et al.  ON THE USE OF QUATERNIONS IN SIMULATION OF RIGID-BODY MOTION , 1958 .

[40]  Gr Geert Veldkamp On the use of dual numbers, vectors and matrices in instantaneous, spatial kinematics , 1976 .

[41]  Joe Rooney,et al.  William Kingdon Clifford (1845-1879) , 2007 .

[42]  J. E. Mebius,et al.  Applications of Quaternions to Dynamical Simulation, Computer Graphics and Biomechanics , 1994 .

[43]  Francis L. Merat,et al.  Introduction to robotics: Mechanics and control , 1987, IEEE J. Robotics Autom..

[44]  George Bruce Halsted,et al.  The Collected Mathematical Papers of Arthur Cayley , 1899 .

[45]  J. Michael McCarthy,et al.  Dual quaternion synthesis of constrained robotic systems , 2003 .

[46]  James D. Foley,et al.  Fundamentals of interactive computer graphics , 1982 .

[47]  John McDonald,et al.  Teaching Quaternions is not Complex , 2009, Eurographics.

[48]  J. P. Lectures on Quaternions , 1897, Nature.

[49]  William Rowan Hamilton,et al.  ON QUATERNIONS, OR ON A NEW SYSTEM OF IMAGINARIES IN ALGEBRA , 1847 .

[50]  Arthur Cayley,et al.  The Collected Mathematical Papers: On certain results relating to Quaternions , 2009 .

[51]  Malcolm D. Shuster,et al.  The nature of the quaternion , 2008 .

[52]  A. Bork,et al.  “Vectors Versus Quaternions”—The Letters in Nature , 1966 .