Nonlinear Bayesian filtering and learning: a neuronal dynamics for perception

A correction to this article has been published and is linked from the HTML version of this paper. The error has been fixed in the paper.

[1]  Olivier Capp'e Online EM Algorithm for Hidden Markov Models , 2009, 0908.2359.

[2]  Guillaume Hennequin,et al.  Fast Sampling-Based Inference in Balanced Neuronal Networks , 2014, NIPS.

[3]  Andrew M. Clark,et al.  Stimulus onset quenches neural variability: a widespread cortical phenomenon , 2010, Nature Neuroscience.

[4]  A. Doucet,et al.  A Tutorial on Particle Filtering and Smoothing: Fifteen years later , 2008 .

[5]  D. Knill,et al.  The Bayesian brain: the role of uncertainty in neural coding and computation , 2004, Trends in Neurosciences.

[6]  Leif H. Finkel,et al.  A Neural Implementation of the Kalman Filter , 2009, NIPS.

[7]  Sebastian Reich,et al.  An ensemble Kalman-Bucy filter for continuous data assimilation , 2012 .

[8]  Rajesh P. N. Rao,et al.  Bayesian brain : probabilistic approaches to neural coding , 2006 .

[9]  José M. F. Moura,et al.  IDENTIFICATION AND FILTERING: OPTIMAL RECURSIVE MAXIMUM LIKELIHOOD APPROACH § , 1986 .

[10]  Peter Dayan,et al.  Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems , 2001 .

[11]  Sean P. Meyn,et al.  Multivariable feedback particle filter , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[12]  Alexandre Pouget,et al.  Optimal Sensorimotor Integration in Recurrent Cortical Networks: A Neural Implementation of Kalman Filters , 2007, The Journal of Neuroscience.

[13]  Joseph G. Makin,et al.  Learning to Estimate Dynamical State with Probabilistic Population Codes , 2015, PLoS Comput. Biol..

[14]  Florian Nadel,et al.  Stochastic Processes And Filtering Theory , 2016 .

[15]  M. Zakai On the optimal filtering of diffusion processes , 1969 .

[16]  Sacha Sokoloski,et al.  Mathematik in den Naturwissenschaften Leipzig Implementing a Bayes Filter in a Neural Circuit : The Case of Unknown Stimulus Dynamics , 2017 .

[17]  Rajesh P. N. Rao,et al.  Neurons as Monte Carlo Samplers: Bayesian Inference and Learning in Spiking Networks , 2014, NIPS.

[18]  József Fiser,et al.  Spontaneous Cortical Activity Reveals Hallmarks of an Optimal Internal Model of the Environment , 2011, Science.

[19]  Jean-Pascal Pfister,et al.  Online Maximum-Likelihood Estimation of the Parameters of Partially Observed Diffusion Processes , 2016, IEEE Transactions on Automatic Control.

[20]  Arnaud Doucet,et al.  On Particle Methods for Parameter Estimation in State-Space Models , 2014, 1412.8695.

[21]  H. Kushner On the Differential Equations Satisfied by Conditional Probablitity Densities of Markov Processes, with Applications , 1964 .

[22]  David Kappel,et al.  Network Plasticity as Bayesian Inference , 2015, PLoS Comput. Biol..

[23]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[24]  Rajesh P. N. Rao,et al.  Bayesian Inference and Online Learning in Poisson Neuronal Networks , 2016, Neural Computation.

[25]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[26]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[27]  R. Handel,et al.  Can local particle filters beat the curse of dimensionality , 2013, 1301.6585.

[28]  Gianluigi Mongillo,et al.  Online Learning with Hidden Markov Models , 2008, Neural Computation.

[29]  Jean-Pascal Pfister,et al.  How to Avoid the Curse of Dimensionality: Scalability of Particle Filters with and without Importance Weights , 2017, SIAM Rev..

[30]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[31]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[32]  Yee Whye Teh,et al.  Bayesian Learning via Stochastic Gradient Langevin Dynamics , 2011, ICML.

[33]  Konrad Paul Kording,et al.  The dynamics of memory as a consequence of optimal adaptation to a changing body , 2007, Nature Neuroscience.

[34]  Wei Ji Ma,et al.  Bayesian inference with probabilistic population codes , 2006, Nature Neuroscience.

[35]  A. Beskos,et al.  On the stability of sequential Monte Carlo methods in high dimensions , 2011, 1103.3965.

[36]  M. Ernst,et al.  Humans integrate visual and haptic information in a statistically optimal fashion , 2002, Nature.

[37]  D. Crisan,et al.  Fundamentals of Stochastic Filtering , 2008 .

[38]  Sumeetpal S. Singh,et al.  Particle approximations of the score and observed information matrix in state space models with application to parameter estimation , 2011 .

[39]  Jeffrey K. Uhlmann,et al.  New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.

[40]  P. Berkes,et al.  Statistically Optimal Perception and Learning: from Behavior to Neural Representations , 2022 .

[41]  D. Crisan,et al.  Approximate McKean–Vlasov representations for a class of SPDEs , 2005, math/0510668.

[42]  D. Knill,et al.  Bayesian sampling in visual perception , 2011, Proceedings of the National Academy of Sciences.

[43]  Lei Yu,et al.  Recursive neural filters and dynamical range transformers , 2004, Proceedings of the IEEE.

[44]  L. Gerencsér,et al.  Recursive estimation of Hidden Markov Models , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[45]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[46]  A. Pouget,et al.  Variance as a Signature of Neural Computations during Decision Making , 2011, Neuron.

[47]  Michael I. Jordan,et al.  An internal model for sensorimotor integration. , 1995, Science.

[48]  Alexandre Pouget,et al.  Exact Inferences in a Neural Implementation of a Hidden Markov Model , 2007, Neural Computation.

[49]  József Fiser,et al.  Neural Variability and Sampling-Based Probabilistic Representations in the Visual Cortex , 2016, Neuron.

[50]  Wolfgang Maass,et al.  Probabilistic Inference in General Graphical Models through Sampling in Stochastic Networks of Spiking Neurons , 2011, PLoS Comput. Biol..

[51]  Sean P. Meyn,et al.  Feedback Particle Filter , 2013, IEEE Transactions on Automatic Control.

[52]  Konrad Paul Kording,et al.  Bayesian integration in sensorimotor learning , 2004, Nature.

[53]  Robert A. Legenstein,et al.  Ensembles of Spiking Neurons with Noise Support Optimal Probabilistic Inference in a Dynamically Changing Environment , 2014, PLoS Comput. Biol..

[54]  J. Huang,et al.  Curse of dimensionality and particle filters , 2003, 2003 IEEE Aerospace Conference Proceedings (Cat. No.03TH8652).

[55]  A. Borst Seeing smells: imaging olfactory learning in bees , 1999, Nature Neuroscience.

[56]  David Marr,et al.  VISION A Computational Investigation into the Human Representation and Processing of Visual Information , 2009 .

[57]  J. Blauert Spatial Hearing: The Psychophysics of Human Sound Localization , 1983 .

[58]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[59]  Hassana K. Oyibo,et al.  Experience-dependent spatial expectations in mouse visual cortex , 2016, Nature Neuroscience.

[60]  Paul Mineiro,et al.  A Monte Carlo EM Approach for Partially Observable Diffusion Processes: Theory and Applications to Neural Networks , 2002, Neural Computation.

[61]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .