Immune-based algorithms for dynamic optimization

The main problem with biologically inspired algorithms (like evolutionary algorithms or particle swarm optimization) when applied to dynamic optimization is to force their readiness for continuous search for new optima occurring in changing locations. Immune-based algorithm, being an instance of an algorithm that adapt by innovation seem to be a perfect candidate for continuous exploration of a search space. In this paper we describe various implementations of the immune principles and we compare these instantiations on complex environments.

[1]  Rajkumar Roy,et al.  Advances in Soft Computing , 2018, Lecture Notes in Computer Science.

[2]  D. G. Brooks,et al.  Computational experience with generalized simulated annealing over continuous variables , 1988 .

[3]  Zbigniew Michalewicz,et al.  Searching for optima in non-stationary environments , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[4]  R.W. Morrison,et al.  A test problem generator for non-stationary environments , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[5]  Bernhard Sendhoff,et al.  Constructing Dynamic Optimization Test Problems Using the Multi-objective Optimization Concept , 2004, EvoWorkshops.

[6]  Leandro Nunes de Castro,et al.  The Clonal Selection Algorithm with Engineering Applications 1 , 2000 .

[7]  Krzysztof Trojanowski,et al.  Studying Properties of Multipopulation Heuristic Approach to Non-Stationary Optimisation Tasks , 2003, IIS.

[8]  Julian F. Miller,et al.  Genetic and Evolutionary Computation — GECCO 2003 , 2003, Lecture Notes in Computer Science.

[9]  C. Mallows,et al.  A Method for Simulating Stable Random Variables , 1976 .

[10]  Zbigniew Michalewicz,et al.  Test-case generator for nonlinear continuous parameter optimization techniques , 2000, IEEE Trans. Evol. Comput..

[11]  L.N. de Castro,et al.  An artificial immune network for multimodal function optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[12]  A. Perelson Immune Network Theory , 1989, Immunological reviews.

[13]  D. Dasgupta Artificial Immune Systems and Their Applications , 1998, Springer Berlin Heidelberg.

[14]  A. Sima Etaner-Uyar,et al.  Towards an analysis of dynamic environments , 2005, GECCO '05.

[15]  Jeffrey O. Kephart,et al.  A biologically inspired immune system for computers , 1994 .

[16]  Andrzej Obuchowicz,et al.  Multidimensional mutations in evolutionary algorithms based on real-valued representation , 2003, Int. J. Syst. Sci..

[17]  Philippe Collard,et al.  An Evolutionary Approach for Time Dependent Optimization , 1997, Int. J. Artif. Intell. Tools.

[18]  Jürgen Branke,et al.  Multiswarms, exclusion, and anti-convergence in dynamic environments , 2006, IEEE Transactions on Evolutionary Computation.

[19]  Jürgen Branke,et al.  Evolutionary Optimization in Dynamic Environments , 2001, Genetic Algorithms and Evolutionary Computation.

[20]  Stephanie Forrest,et al.  Infect Recognize Destroy , 1996 .

[21]  Rudolf F. Albrecht,et al.  Artificial Neural Nets and Genetic Algorithms , 1995, Springer Vienna.

[22]  Jonathan Timmis,et al.  A Comment on Opt-AiNET: An Immune Network Algorithm for Optimisation , 2004, GECCO.

[23]  Silvano Martello,et al.  Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization , 2012 .

[24]  Karsten Weicker,et al.  Performance Measures for Dynamic Environments , 2002, PPSN.

[25]  Nenad Mladenović,et al.  An Introduction to Variable Neighborhood Search , 1997 .

[26]  Tim Jones Evolutionary Algorithms, Fitness Landscapes and Search , 1995 .

[27]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[28]  John E. Hunt,et al.  Learning using an artificial immune system , 1996 .

[29]  Jonathan Timmis,et al.  Immune Inspired Somatic Contiguous Hypermutation for Function Optimisation , 2003, GECCO.

[30]  Leandro Nunes de Castro,et al.  Artificial Immune Systems: A New Computational Approach , 2002 .

[31]  Hugues Bersini,et al.  Hints for Adaptive Problem Solving Gleaned from Immune Networks , 1990, PPSN.

[32]  T. Krink,et al.  Self-organized criticality and mass extinction in evolutionary algorithms , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[33]  Jürgen Branke,et al.  Evolutionary optimization in uncertain environments-a survey , 2005, IEEE Transactions on Evolutionary Computation.

[34]  M. E. Johnson,et al.  Generalized simulated annealing for function optimization , 1986 .

[35]  Krzysztof Trojanowski,et al.  Memory Management in Artificial Immune System , 2003 .

[36]  Krzysztof Trojanowski Clonal Selection Approach with Mutations Based on Symmetric alpha -Stable Distributions for Non-stationary Optimization Tasks , 2007, ICANNGA.

[37]  P. Bak,et al.  Evolution as a self-organized critical phenomenon. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Peter J. Angeline,et al.  Tracking Extrema in Dynamic Environments , 1997, Evolutionary Programming.

[39]  N. K. Jerne,et al.  Idiotypic Networks and Other Preconceived Ideas , 1984, Immunological reviews.

[40]  John J. Grefenstette,et al.  Genetic Algorithms for Tracking Changing Environments , 1993, ICGA.

[41]  Dirk P. Kroese,et al.  The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning , 2004 .

[42]  Khalid Saeed,et al.  Advances in Information Processing and Protection , 2007 .

[43]  S. Wierzchon FUNCTION OPTIMIZATION BY THE IMMUNE METAPHOR , 2002 .

[44]  Zbigniew Michalewicz,et al.  Analysis and modeling of control tasks in dynamic systems , 2002, IEEE Trans. Evol. Comput..

[45]  Dr. Zbigniew Michalewicz,et al.  How to Solve It: Modern Heuristics , 2004 .

[46]  G. Weisbuch,et al.  Immunology for physicists , 1997 .

[47]  David E. Goldberg,et al.  Nonstationary Function Optimization Using Genetic Algorithms with Dominance and Diploidy , 1987, ICGA.

[48]  Andrzej Obuchowicz,et al.  Isotropic symmetric /spl alpha/-stable mutations for evolutionary algorithms , 2005, 2005 IEEE Congress on Evolutionary Computation.

[49]  John J. Grefenstette,et al.  Genetic Algorithms for Changing Environments , 1992, PPSN.

[50]  Riccardo Poli,et al.  New ideas in optimization , 1999 .

[51]  Pedro Larrañaga,et al.  Estimation of Distribution Algorithms , 2002, Genetic Algorithms and Evolutionary Computation.

[52]  John J. Grefenstette,et al.  Genetic algorithms and their applications , 1987 .

[53]  Hajime Kita,et al.  Adaptation to a Changing Environment by Means of the Thermodynamical Genetic Algorithm , 1999 .

[54]  Robert L. Smith,et al.  Simulated annealing for constrained global optimization , 1994, J. Glob. Optim..

[55]  A. Percus,et al.  Nature's Way of Optimizing , 1999, Artif. Intell..

[56]  Fabrício Olivetti de França,et al.  An artificial immune network for multimodal function optimization on dynamic environments , 2005, GECCO.

[57]  Krzysztof Trojanowski,et al.  On Some Properties of the B-Cell Algorithm in Non-Stationary Environments , 2007, Advances in Information Processing and Protection.

[58]  John J. Grefenstette,et al.  Case-Based Initialization of Genetic Algorithms , 1993, ICGA.

[59]  Carlos Cotta,et al.  A Hybrid Genetic Algorithm for the 0-1 Multiple Knapsack Problem , 1997, ICANNGA.

[60]  Jonathan Timmis,et al.  Artificial immune systems - a new computational intelligence paradigm , 2002 .

[61]  Krzysztof Trojanowski,et al.  Clonal selection principle based approach to non-stationary optimization tasks , 2006 .

[62]  Shengxiang Yang,et al.  Genetic algorithms with self-organized criticality for dynamic optimization problems , 2005, 2005 IEEE Congress on Evolutionary Computation.

[63]  Krzysztof Trojanowski,et al.  A Comparison of Clonal Selection Based Algorithms for Non-Stationary Optimisation Tasks , 2006, Intelligent Information Systems.

[64]  Philippe Collard,et al.  From GAs to artificial immune systems: improving adaptation in time dependent optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[65]  Krzysztof Trojanowski,et al.  Measures for Non-Stationary Optimization Tasks , 2001 .

[66]  S. Kauffman,et al.  Adaptive Dynamic Networks as Models for the Immune System and Autocatalytic Sets , 1987, Annals of the New York Academy of Sciences.

[67]  Jürgen Branke,et al.  Memory enhanced evolutionary algorithms for changing optimization problems , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[68]  Michael N. Vrahatis,et al.  Unified Particle Swarm Optimization for Solving Constrained Engineering Optimization Problems , 2005, ICNC.

[69]  W. Cedeno,et al.  On the use of niching for dynamic landscapes , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).