Lateral inhibition by Martinotti interneurons is facilitated by cholinergic inputs in human and mouse neocortex

[1]  Alison L. Barth,et al.  Precisely Timed Nicotinic Activation Drives SST Inhibition in Neocortical Circuits , 2018, Neuron.

[2]  H. Mansvelder,et al.  Cholinergic Modulation of Cortical Microcircuits Is Layer-Specific: Evidence from Rodent, Monkey and Human Brain , 2017, Front. Neural Circuits.

[3]  G. Tamás,et al.  High-Precision Fast-Spiking Basket Cell Discharges during Complex Events in the Human Neocortex , 2017, eNeuro.

[4]  William Muñoz,et al.  Layer-specific modulation of neocortical dendritic inhibition during active wakefulness , 2017, Science.

[5]  Markus M. Hilscher,et al.  Chrna2-Martinotti Cells Synchronize Layer 5 Type A Pyramidal Cells via Rebound Excitation , 2017, PLoS biology.

[6]  David Eriksson,et al.  A Principle for Describing and Verifying Brain Mechanisms Using Ongoing Activity , 2017, Front. Neural Circuits.

[7]  Guy Eyal,et al.  Unique membrane properties and enhanced signal processing in human neocortical neurons , 2016, eLife.

[8]  M. Ananth,et al.  Basal Forebrain Cholinergic Circuits and Signaling in Cognition and Cognitive Decline , 2016, Neuron.

[9]  Wei-Cheng Chang,et al.  Cell type-specific long-range connections of basal forebrain circuit , 2016, eLife.

[10]  C. D. de Kock,et al.  Layer-specific cholinergic control of human and mouse cortical synaptic plasticity , 2016, Nature Communications.

[11]  Márton Rózsa,et al.  Human pyramidal to interneuron synapses are mediated by multi-vesicular release and multiple docked vesicles , 2016, eLife.

[12]  R. Tremblay,et al.  GABAergic Interneurons in the Neocortex: From Cellular Properties to Circuits , 2016, Neuron.

[13]  B. Lambolez,et al.  Nicotinic Transmission onto Layer 6 Cortical Neurons Relies on Synaptic Activation of Non-α7 Receptors. , 2016, Cerebral cortex.

[14]  Alexander S. Ecker,et al.  Principles of connectivity among morphologically defined cell types in adult neocortex , 2015, Science.

[15]  Guy Eyal,et al.  Dendritic and Axonal Architecture of Individual Pyramidal Neurons across Layers of Adult Human Neocortex , 2015, Cerebral cortex.

[16]  B. Hangya,et al.  Central Cholinergic Neurons Are Rapidly Recruited by Reinforcement Feedback , 2015, Cell.

[17]  Jack Waters,et al.  Acetylcholine excites neocortical pyramidal neurons via nicotinic receptors. , 2015, Journal of neurophysiology.

[18]  Mriganka Sur,et al.  An acetylcholine-activated microcircuit drives temporal dynamics of cortical activity , 2015, Nature Neuroscience.

[19]  B. Sabatini,et al.  Corelease of acetylcholine and GABA from cholinergic forebrain neurons , 2015, eLife.

[20]  György Buzsáki,et al.  Tasks for inhibitory interneurons in intact brain circuits , 2015, Neuropharmacology.

[21]  D. Rotaru,et al.  Topographic Mapping between Basal Forebrain Cholinergic Neurons and the Medial Prefrontal Cortex in Mice , 2014, The Journal of Neuroscience.

[22]  Daniele Linaro,et al.  High Bandwidth Synaptic Communication and Frequency Tracking in Human Neocortex , 2014, PLoS biology.

[23]  H. Morishita,et al.  Cortical parvalbumin and somatostatin GABA neurons express distinct endogenous modulators of nicotinic acetylcholine receptors , 2014, Molecular Brain.

[24]  Juan D. Pita-Almenar,et al.  Mechanisms Underlying Desynchronization of Cholinergic-Evoked Thalamic Network Activity , 2014, The Journal of Neuroscience.

[25]  Johannes J. Letzkus,et al.  Cholinergic circuit modulation through differential recruitment of neocortical interneuron types during behaviour , 2014, The Journal of physiology.

[26]  S. Hestrin,et al.  Nicotinic modulation of cortical circuits , 2014, Front. Neural Circuits.

[27]  C. D. de Kock,et al.  Mechanisms Underlying the Rules for Associative Plasticity at Adult Human Neocortical Synapses , 2013, The Journal of Neuroscience.

[28]  R. Yuste,et al.  The Logic of Inhibitory Connectivity in the Neocortex , 2013, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[29]  C. Lustig,et al.  Prefrontal Cholinergic Mechanisms Instigating Shifts from Monitoring for Cues to Cue-Guided Performance: Converging Electrochemical and fMRI Evidence from Rats and Humans , 2013, The Journal of Neuroscience.

[30]  R. Tremblay,et al.  Neocortical Somatostatin-Expressing GABAergic Interneurons Disinhibit the Thalamorecipient Layer 4 , 2013, Neuron.

[31]  S. Hestrin,et al.  Mechanisms Generating Dual-Component Nicotinic EPSCs in Cortical Interneurons , 2012, The Journal of Neuroscience.

[32]  L. Gentet Functional diversity of supragranular GABAergic neurons in the barrel cortex , 2012, Front. Neural Circuits.

[33]  Idan Segev,et al.  Principles Governing the Operation of Synaptic Inhibition in Dendrites , 2012, Neuron.

[34]  Corbett Bennett,et al.  Prolonged Disynaptic Inhibition in the Cortex Mediated by Slow, Non-α7 Nicotinic Excitation of a Specific Subset of Cortical Interneurons , 2012, The Journal of Neuroscience.

[35]  Jochen F Staiger,et al.  Unique functional properties of somatostatin-expressing GABAergic neurons in mouse barrel cortex , 2012, Nature Neuroscience.

[36]  Huibert D. Mansvelder,et al.  Layer-Specific Modulation of the Prefrontal Cortex by Nicotinic Acetylcholine Receptors , 2012, Cerebral cortex.

[37]  Johannes J. Letzkus,et al.  A disinhibitory microcircuit for associative fear learning in the auditory cortex , 2011, Nature.

[38]  H. Mansvelder,et al.  Nicotinic Acetylcholine Receptor β2 Subunits in the Medial Prefrontal Cortex Control Attention , 2011, Science.

[39]  Yousheng Shu,et al.  Membrane Potential-Dependent Modulation of Recurrent Inhibition in Rat Neocortex , 2011, PLoS biology.

[40]  Thomas K. Berger,et al.  Brief Bursts Self-Inhibit and Correlate the Pyramidal Network , 2010, PLoS biology.

[41]  C. D. de Kock,et al.  Frontiers in Synaptic Neuroscience Synaptic Neuroscience , 2022 .

[42]  Thomas K. Berger,et al.  Frequency‐dependent disynaptic inhibition in the pyramidal network: a ubiquitous pathway in the developing rat neocortex , 2009, The Journal of physiology.

[43]  W. Senn,et al.  Dendritic encoding of sensory stimuli controlled by deep cortical interneurons , 2009, Nature.

[44]  Erika E Fanselow,et al.  Selective, state-dependent activation of somatostatin-expressing inhibitory interneurons in mouse neocortex. , 2008, Journal of neurophysiology.

[45]  Csaba Varga,et al.  Complex Events Initiated by Individual Spikes in the Human Cerebral Cortex , 2008, PLoS biology.

[46]  M. Sarter,et al.  Article Prefrontal Acetylcholine Release Controls Cue Detection on Multiple Timescales , 2022 .

[47]  Massimo Scanziani,et al.  Supralinear increase of recurrent inhibition during sparse activity in the somatosensory cortex , 2007, Nature Neuroscience.

[48]  Huibert D. Mansvelder,et al.  Distributed Network Actions by Nicotine Increase the Threshold for Spike-Timing-Dependent Plasticity in Prefrontal Cortex , 2007, Neuron.

[49]  Yasuo Kawaguchi,et al.  Heterogeneity of phasic cholinergic signaling in neocortical neurons. , 2007, Journal of neurophysiology.

[50]  H. Markram,et al.  Disynaptic Inhibition between Neocortical Pyramidal Cells Mediated by Martinotti Cells , 2007, Neuron.

[51]  A. Agmon,et al.  Distinct Subtypes of Somatostatin-Containing Neocortical Interneurons Revealed in Transgenic Mice , 2006, The Journal of Neuroscience.

[52]  Yasuo Kawaguchi,et al.  Dendritic branch typing and spine expression patterns in cortical nonpyramidal cells. , 2006, Cerebral cortex.

[53]  A. Alonso,et al.  Cholinergic Basal Forebrain Neurons Burst with Theta during Waking and Paradoxical Sleep , 2005, The Journal of Neuroscience.

[54]  H. Markram,et al.  Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat , 2004, The Journal of physiology.

[55]  Rafael Yuste,et al.  Global dendritic calcium spikes in mouse layer 5 low threshold spiking interneurones: implications for control of pyramidal cell bursting , 2004, The Journal of physiology.

[56]  Massimo Scanziani,et al.  Routing of spike series by dynamic circuits in the hippocampus , 2004, Nature.

[57]  F. Karube,et al.  Axon Branching and Synaptic Bouton Phenotypes in GABAergic Nonpyramidal Cell Subtypes , 2004, The Journal of Neuroscience.

[58]  Serge Charpak,et al.  Two types of nicotinic receptors mediate an excitation of neocortical layer I interneurons. , 2002, Journal of neurophysiology.

[59]  R. Yuste,et al.  Stereotyped position of local synaptic targets in neocortex. , 2001, Science.

[60]  B. Connors,et al.  A network of electrically coupled interneurons drives synchronized inhibition in neocortex , 2000, Nature Neuroscience.

[61]  H. Mansvelder,et al.  Long-Term Potentiation of Excitatory Inputs to Brain Reward Areas by Nicotine , 2000, Neuron.

[62]  H. Eisenberg,et al.  Nicotinic Receptor Activation in Human Cerebral Cortical Interneurons: a Mechanism for Inhibition and Disinhibition of Neuronal Networks , 2000, The Journal of Neuroscience.

[63]  J. Rossier,et al.  Selective Excitation of Subtypes of Neocortical Interneurons by Nicotinic Receptors , 1999, The Journal of Neuroscience.

[64]  Y. Kubota,et al.  GABAergic cell subtypes and their synaptic connections in rat frontal cortex. , 1997, Cerebral cortex.

[65]  F. Morrell,et al.  Cholinergic Synapses in Human Cerebral Cortex: An Ultrastructural Study in Serial Sections , 1997, Experimental Neurology.

[66]  R. Gray,et al.  Hippocampal synaptic transmission enhanced by low concentrations of nicotine , 1996, Nature.

[67]  L. Role,et al.  Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. , 1995, Science.

[68]  K. Horikawa,et al.  A versatile means of intracellular labeling: injection of biocytin and its detection with avidin conjugates , 1988, Journal of Neuroscience Methods.

[69]  M. Hasselmo,et al.  Modes and Models of Forebrain Cholinergic Neuromodulation of Cognition , 2011, Neuropsychopharmacology.

[70]  G. Fishell,et al.  Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons , 2011, Developmental neurobiology.

[71]  A. Thomson,et al.  Interlaminar connections in the neocortex. , 2003, Cerebral cortex.