An explicit counterexample to the Lagarias-Wang finiteness conjecture

The joint spectral radius of a finite set of real $d \times d$ matrices is defined to be the maximum possible exponential rate of growth of long products of matrices drawn from that set. A set of matrices is said to have the \emph{finiteness property} if there exists a periodic product which achieves this maximal rate of growth. J.C. Lagarias and Y. Wang conjectured in 1995 that every finite set of real $d \times d$ matrices satisfies the finiteness property. However, T. Bousch and J. Mairesse proved in 2002 that counterexamples to the finiteness conjecture exist, showing in particular that there exists a family of pairs of $2 \times 2$ matrices which contains a counterexample. Similar results were subsequently given by V.D. Blondel, J. Theys and A.A. Vladimirov and by V.S. Kozyakin, but no explicit counterexample to the finiteness conjecture has so far been given. The purpose of this paper is to resolve this issue by giving the first completely explicit description of a counterexample to the Lagarias-Wang finiteness conjecture. Namely, for the set \[ \mathsf{A}_{\alpha_*}:= \{({cc}1&1\\0&1), \alpha_*({cc}1&0\\1&1)\}\] we give an explicit value of \alpha_* \simeq 0.749326546330367557943961948091344672091327370236064317358024...] such that $\mathsf{A}_{\alpha_*}$ does not satisfy the finiteness property.

[1]  C. Reutenauer,et al.  Combinatorics on Words: Christoffel Words and Repetitions in Words , 2008 .

[2]  Paul H. Siegel,et al.  On codes that avoid specified differences , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[3]  Ott,et al.  Optimal periodic orbits of chaotic systems occur at low period. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[4]  Yang Wang,et al.  Bounded semigroups of matrices , 1992 .

[5]  I. Daubechies,et al.  Sets of Matrices All Infinite Products of Which Converge , 1992 .

[6]  Nikita Sidorov,et al.  Number of representations related to a linear recurrent basis , 1999 .

[7]  R. Jungers The Joint Spectral Radius: Theory and Applications , 2009 .

[8]  M. Lothaire,et al.  Algebraic Combinatorics on Words: Index of Notation , 2002 .

[9]  Vincent D. Blondel,et al.  An Elementary Counterexample to the Finiteness Conjecture , 2002, SIAM J. Matrix Anal. Appl..

[10]  Victor Kozyakin,et al.  An explicit Lipschitz constant for the joint spectral radius , 2009, 0909.3170.

[11]  Vincent D. Blondel,et al.  On the number of alpha-power-free binary words for 2alpha<=7/3 , 2009, Theor. Comput. Sci..

[12]  J. Mairesse,et al.  Asymptotic height optimization for topical IFS, Tetris heaps, and the finiteness conjecture , 2001 .

[13]  John N. Tsitsiklis,et al.  The Lyapunov exponent and joint spectral radius of pairs of matrices are hard—when not impossible—to compute and to approximate , 1997, Math. Control. Signals Syst..

[14]  V. Kozyakin Structure of extremal trajectories of discrete linear systems and the finiteness conjecture , 2007 .

[15]  Alex Furman,et al.  On the multiplicative ergodic theorem for uniquely ergodic systems , 1997 .

[16]  F. Wirth The generalized spectral radius and extremal norms , 2002 .

[17]  Rapha L. Jungers The Joint Spectral Radius , 2009 .

[18]  Shaun Bullett,et al.  Ordered orbits of the shift, square roots, and the devil's staircase , 1994, Mathematical Proceedings of the Cambridge Philosophical Society.

[19]  M. Lothaire Algebraic Combinatorics on Words , 2002 .

[20]  V. Blondel,et al.  On the number of a -power-free binary words for 2 < a = 7 / 3 , 2009 .

[21]  Xiongping Dai,et al.  Almost Sure Stability of Discrete-Time Switched Linear Systems: A Topological Point of View , 2008, SIAM J. Control. Optim..

[22]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[23]  J. Karhumäki,et al.  ALGEBRAIC COMBINATORICS ON WORDS (Encyclopedia of Mathematics and its Applications 90) By M. LOTHAIRE: 504 pp., 60.00, ISBN 0 521 81220 8 (Cambridge University Press, 2002) , 2003 .

[24]  Pablo A. Parrilo,et al.  Approximation of the Joint Spectral Radius of a Set of Matrices Using Sum of Squares , 2007, HSCC.

[25]  Joseph P. S. Kung,et al.  Gian-Carlo Rota on Analysis and Probability: Selected Papers and Commentaries , 2011 .

[26]  Thierry Bousch,et al.  Le poisson n'a pas d'arêtes , 2000 .

[27]  M. Lothaire Applied Combinatorics on Words (Encyclopedia of Mathematics and its Applications) , 2005 .

[28]  Victor Kozyakin,et al.  On explicit a priori estimates of the joint spectral radius by the generalized Gelfand formula , 2008, 0810.2157.

[29]  Nicola Guglielmi,et al.  On the zero-stability of variable stepsize multistep methods: the spectral radius approach , 2001, Numerische Mathematik.

[30]  V. Kozyakin A Dynamical Systems Construction of a Counterexample to the Finiteness Conjecture , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[31]  Vincent D. Blondel,et al.  On the finiteness property for rational matrices , 2007 .

[32]  Gilbert Strang,et al.  CONTINUITY OF THE JOINT SPECTRAL RADIUS: APPLICATION TO WAVELETS , 1995 .

[33]  Vincent D. Blondel,et al.  Computationally Efficient Approximations of the Joint Spectral Radius , 2005, SIAM J. Matrix Anal. Appl..

[34]  J. Lagarias,et al.  The finiteness conjecture for the generalized spectral radius of a set of matrices , 1995 .

[35]  Tero Harju,et al.  Combinatorics on Words , 2004 .

[36]  Sebastian J. Schreiber,et al.  On Growth Rates of Subadditive Functions for Semiflows , 1998 .

[37]  M. Zennaro,et al.  Finiteness property of pairs of 2× 2 sign-matrices via real extremal polytope norms , 2010 .

[38]  A. V. Nabutovsky Irrationality of limits of quickly convergent algebraic numbers sequences , 1988 .

[39]  I. Morris A rapidly-converging lower bound for the joint spectral radius via multiplicative ergodic theory , 2009, 0906.0260.

[40]  Victor S. Kozyakin,et al.  On the computational aspects of the theory of joint spectral radius , 2009 .

[41]  Fabian R. Wirth,et al.  Complex Polytope Extremality Results for Families of Matrices , 2005, SIAM J. Matrix Anal. Appl..

[42]  E. T. An Introduction to the Theory of Numbers , 1946, Nature.

[43]  Joseph P. S. Kung,et al.  Gian-Carlo Rota on Analysis and Probability , 2002 .

[44]  J. Zukas Introduction to the Modern Theory of Dynamical Systems , 1998 .

[45]  J. S. Frame Continued Fractions and Matrices , 1949 .

[46]  L. Gurvits Stability of discrete linear inclusion , 1995 .

[47]  O. Gaans Probability measures on metric spaces , 2022 .

[48]  I. Daubechies,et al.  Two-scale difference equations II. local regularity, infinite products of matrices and fractals , 1992 .

[49]  Oliver Jenkinson Frequency Locking on the Boundary of the Barycentre Set , 2000, Exp. Math..

[50]  J. Theys Joint spectral radius : theory and approximations/ , 2005 .