Comprehensive theory of differential kinematics and dynamics towards extensive motion optimization framework

This paper presents a novel unified theoretical framework for differential kinematics and dynamics for the optimization of complex robot motion. By introducing an 18×18 comprehensive motion transformation matrix, the forward differential kinematics and dynamics, including velocity and acceleration, can be written in a simple chain product similar to an ordinary rotational matrix. This formulation enables the analytical computation of derivatives of various physical quantities (e.g. link velocities, link accelerations, or joint torques) with respect to joint coordinates, velocities and accelerations for a robot trajectory in an efficient manner ( O ( N J ) , where N J is the number of the robot’s degree of freedom), which is useful for motion optimization. Practical implementation of gradient computation is demonstrated together with simulation results of robot motion optimization to validate the effectiveness of the proposed framework.

[1]  M. Gautier,et al.  Exciting Trajectories for the Identification of Base Inertial Parameters of Robots , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[2]  Wisama Khalil,et al.  Modeling, Identification and Control of Robots , 2003 .

[3]  R. Featherstone The Calculation of Robot Dynamics Using Articulated-Body Inertias , 1983 .

[4]  Mitsuharu Morisawa,et al.  Humanoid robot HRP-4 - Humanoid robotics platform with lightweight and slim body , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[5]  Eiichi Yoshida,et al.  Humanoid robot as an evaluator of assistive devices , 2013, 2013 IEEE International Conference on Robotics and Automation.

[6]  G. Sohl,et al.  A Recursive Multibody Dynamics and Sensitivity Algorithm for Branched Kinematic Chains , 2001 .

[7]  Pierre-Brice Wieber,et al.  Hierarchical quadratic programming: Fast online humanoid-robot motion generation , 2014, Int. J. Robotics Res..

[8]  Michael Gleicher,et al.  Retargetting motion to new characters , 1998, SIGGRAPH.

[9]  Gentiane Venture,et al.  Optimal Exciting Dance for Identifying Inertial Parameters of an Anthropomorphic Structure , 2016, IEEE Transactions on Robotics.

[10]  Robin J. Hogan,et al.  Fast Reverse-Mode Automatic Differentiation using Expression Templates in C++ , 2014, ACM Trans. Math. Softw..

[11]  Scott L. Delp,et al.  A computational framework for simulating and analyzing human and animal movement , 2000, Comput. Sci. Eng..

[12]  G. Dullerud A Computational Framework , 1996 .

[13]  S. Nakaoka,et al.  Choreonoid: Extensible virtual robot environment built on an integrated GUI framework , 2012, 2012 IEEE/SICE International Symposium on System Integration (SII).

[14]  Yoshihiko Nakamura,et al.  Whole-body Cooperative Balancing of Humanoid Robot using COG Jacobian , 2002 .

[15]  Yoshihiko Nakamura,et al.  Fast inverse kinematics algorithm for large DOF system with decomposed gradient computation based on recursive formulation of equilibrium , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[16]  Nancy S. Pollard,et al.  Efficient synthesis of physically valid human motion , 2003, ACM Trans. Graph..

[17]  Stephane Cotin,et al.  EP4A: Software and Computer Based Simulator Research: Development and Outlook SOFA—An Open Source Framework for Medical Simulation , 2007, MMVR.

[18]  Kyungdon Joo,et al.  Robot System of DRC‐HUBO+ and Control Strategy of Team KAIST in DARPA Robotics Challenge Finals , 2017, J. Field Robotics.

[19]  Kazuhito Yokoi,et al.  Biped walking pattern generation by using preview control of zero-moment point , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[20]  Katsu Yamane,et al.  Natural Motion Animation through Constraining and Deconstraining at Will , 2003, IEEE Trans. Vis. Comput. Graph..

[21]  M. Gautier,et al.  Exciting Trajectories for the Identification of Base Inertial Parameters of Robots , 1992 .

[22]  Eiichi Yoshida,et al.  Generating persistently exciting trajectory based on condition number optimization , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[23]  Yoshihiko Nakamura,et al.  Advanced robotics - redundancy and optimization , 1990 .

[24]  Frank Chongwoo Park,et al.  A Lie Group Formulation of Robot Dynamics , 1995, Int. J. Robotics Res..

[25]  Eiichi Yoshida,et al.  On human motion imitation by humanoid robot , 2008, 2008 IEEE International Conference on Robotics and Automation.

[26]  Gentiane Venture,et al.  Identifiability and identification of inertial parameters using the underactuated base-link dynamics for legged multibody systems , 2014, Int. J. Robotics Res..

[27]  Christopher G. Atkeson,et al.  Adapting human motion for the control of a humanoid robot , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[28]  Oussama Khatib,et al.  A unified approach for motion and force control of robot manipulators: The operational space formulation , 1987, IEEE J. Robotics Autom..

[29]  Katsu Yamane,et al.  Simulating and Generating Motions of Human Figures , 2004, Springer Tracts in Advanced Robotics.

[30]  Eiichi Yoshida,et al.  Comprehensive Theory of Differential Kinematics and Dynamics for Motion Optimization , 2017, Robotics: Science and Systems.

[31]  Y. Nakamura,et al.  Somatosensory computation for man-machine interface from motion-capture data and musculoskeletal human model , 2005, IEEE Transactions on Robotics.

[32]  David A. Forsyth,et al.  Skeletal parameter estimation from optical motion capture data , 2004, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[33]  Kazuhito Yokoi,et al.  Resolved momentum control: humanoid motion planning based on the linear and angular momentum , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[34]  M Vukobratović,et al.  On the stability of biped locomotion. , 1970, IEEE transactions on bio-medical engineering.

[35]  Jun-Ho Oh,et al.  Humanoid Robot의 개발 현황과 전망 , 2004 .

[36]  J. Y. S. Luh,et al.  Resolved-acceleration control of mechanical manipulators , 1980 .

[37]  Eiichi Yoshida,et al.  Motion Retargeting for Humanoid Robots Based on Simultaneous Morphing Parameter Identification and Motion Optimization , 2017, IEEE Transactions on Robotics.

[38]  James D. Myers,et al.  Computing in Science and Engineering … in Manufacturing , 2013, CSE 2013.