Adaptively Secure and Succinct Functional Encryption: Improving Security and Efficiency, Simultaneously

Functional encryption (FE) is advanced encryption that enables us to issue functional decryption keys where functions are hardwired. When we decrypt a ciphertext of a message m by a functional decryption key where a function f is hardwired, we can obtain f(m) and nothing else. We say FE is selectively or adaptively secure when target messages are chosen at the beginning or after function queries are sent, respectively. In the weakly-selective setting, function queries are also chosen at the beginning. We say FE is single-key/collusion-resistant when it is secure against adversaries that are given only-one/polynomially-many functional decryption keys, respectively. We say FE is sublinearly-succinct/succinct when the running time of an encryption algorithm is sublinear/poly-logarithmic in the function description size, respectively.

[1]  Amit Sahai,et al.  On the (im)possibility of obfuscating programs , 2001, JACM.

[2]  A. Sahai,et al.  Indistinguishability Obfuscation from Functional Encryption for Simple Functions Prabhanjan Ananth , 2015 .

[3]  Yehuda Lindell,et al.  A Proof of Security of Yao’s Protocol for Two-Party Computation , 2009, Journal of Cryptology.

[4]  Fuyuki Kitagawa,et al.  Simple and Generic Constructions of Succinct Functional Encryption , 2018, Journal of Cryptology.

[5]  Amit Sahai,et al.  Worry-free encryption: functional encryption with public keys , 2010, CCS '10.

[6]  Fuyuki Kitagawa,et al.  Obfustopia Built on Secret-Key Functional Encryption , 2018, Journal of Cryptology.

[7]  Prabhanjan Vijendra Ananth,et al.  Succinct Garbling Schemes from Functional Encryption through a Local Simulation Paradigm , 2018, IACR Cryptol. ePrint Arch..

[8]  Sanjam Garg,et al.  Single-Key to Multi-Key Functional Encryption with Polynomial Loss , 2016, TCC.

[9]  Moni Naor,et al.  Public-key cryptosystems provably secure against chosen ciphertext attacks , 1990, STOC '90.

[10]  Mark Zhandry,et al.  Breaking the Sub-Exponential Barrier in Obfustopia , 2017, EUROCRYPT.

[11]  Ilan Komargodski,et al.  Be Adaptive, Avoid Overcommitting , 2017, CRYPTO.

[12]  Feng-Hao Liu,et al.  Leakage-Resilient Public-Key Encryption from Obfuscation , 2016, Public Key Cryptography.

[13]  Abhi Shelat,et al.  Bounded KDM Security from iO and OWF , 2016, SCN.

[14]  Gil Segev,et al.  Limits on the Power of Indistinguishability Obfuscation and Functional Encryption , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[15]  Brent Waters,et al.  Encoding Functions with Constant Online Rate, or How to Compress Garbled Circuit Keys , 2015, SIAM J. Comput..

[16]  Carmit Hazay,et al.  Selective Opening Security for Receivers , 2015, ASIACRYPT.

[17]  Sanjam Garg,et al.  Revisiting the Cryptographic Hardness of Finding a Nash Equilibrium , 2016, CRYPTO.

[18]  Daniel Wichs,et al.  Adaptive Security of Yao's Garbled Circuits , 2016, TCC.

[19]  Vinod Vaikuntanathan,et al.  From Selective to Adaptive Security in Functional Encryption , 2015, CRYPTO.

[20]  Mark Zhandry,et al.  Decomposable Obfuscation: A Framework for Building Applications of Obfuscation from Polynomial Hardness , 2017, TCC.

[21]  Nico Döttling,et al.  New Constructions of Identity-Based and Key-Dependent Message Secure Encryption Schemes , 2018, Public Key Cryptography.

[22]  Sanjam Garg,et al.  Adaptively Secure Garbling with Near Optimal Online Complexity , 2018, IACR Cryptol. ePrint Arch..

[23]  Zvika Brakerski,et al.  Function-Private Functional Encryption in the Private-Key Setting , 2015, TCC.

[24]  Dennis Hofheinz,et al.  The Usefulness of Sparsifiable Inputs: How to Avoid Subexponential iO , 2020, IACR Cryptol. ePrint Arch..

[25]  Moni Naor,et al.  Nonmalleable Cryptography , 2000, SIAM Rev..

[26]  Shweta Agrawal,et al.  FE and iO for Turing Machines from Minimal Assumptions , 2018, IACR Cryptol. ePrint Arch..

[27]  Fuyuki Kitagawa,et al.  From Single-Key to Collusion-Resistant Secret-Key Functional Encryption by Leveraging Succinctness , 2017, IACR Cryptol. ePrint Arch..

[28]  Aggelos Kiayias,et al.  Delegatable pseudorandom functions and applications , 2013, IACR Cryptol. ePrint Arch..

[29]  Rafail Ostrovsky,et al.  Adaptively Secure Garbled Circuits from One-Way Functions , 2016, CRYPTO.

[30]  Nir Bitansky,et al.  Indistinguishability Obfuscation from Functional Encryption , 2018, J. ACM.

[31]  Brent Waters,et al.  How to use indistinguishability obfuscation: deniable encryption, and more , 2014, IACR Cryptol. ePrint Arch..

[32]  Nir Bitansky,et al.  From Cryptomania to Obfustopia Through Secret-Key Functional Encryption , 2016, Journal of Cryptology.

[33]  Amit Sahai,et al.  Functional Encryption for Turing Machines , 2016, TCC.

[34]  Nico Döttling,et al.  Laconic Oblivious Transfer and Its Applications , 2017, CRYPTO.

[35]  Nico Döttling,et al.  From Selective IBE to Full IBE and Selective HIBE , 2017, TCC.

[36]  Sanjam Garg,et al.  A Simple Construction of iO for Turing Machines , 2018, IACR Cryptol. ePrint Arch..

[37]  Brent Waters,et al.  Constrained Pseudorandom Functions and Their Applications , 2013, ASIACRYPT.

[38]  Fuyuki Kitagawa,et al.  Indistinguishability Obfuscation for All Circuits from Secret-Key Functional Encryption , 2017, IACR Cryptol. ePrint Arch..

[39]  Silvio Micali,et al.  How to construct random functions , 1986, JACM.

[40]  Sanjam Garg,et al.  Two-Round Multiparty Secure Computation Minimizing Public Key Operations , 2018, IACR Cryptol. ePrint Arch..

[41]  Daniel Wichs,et al.  Adaptively Indistinguishable Garbled Circuits , 2017, TCC.

[42]  Oded Goldreich,et al.  The Foundations of Cryptography - Volume 2: Basic Applications , 2001 .

[43]  Mark Zhandry,et al.  Anonymous Traitor Tracing: How to Embed Arbitrary Information in a Key , 2016, EUROCRYPT.

[44]  Ilan Komargodski,et al.  From Minicrypt to Obfustopia via Private-Key Functional Encryption , 2017, EUROCRYPT.

[45]  Abhishek Jain,et al.  Indistinguishability Obfuscation from Compact Functional Encryption , 2015, CRYPTO.

[46]  Brent Waters,et al.  Candidate Indistinguishability Obfuscation and Functional Encryption for all Circuits , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[47]  Brent Waters,et al.  Functional Encryption: Definitions and Challenges , 2011, TCC.

[48]  Andrew Chi-Chih Yao,et al.  How to generate and exchange secrets , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[49]  Vinod Vaikuntanathan,et al.  Anonymous IBE, Leakage Resilience and Circular Security from New Assumptions , 2018, IACR Cryptol. ePrint Arch..

[50]  Nir Bitansky,et al.  Indistinguishability Obfuscation for RAM Programs and Succinct Randomized Encodings , 2018, SIAM J. Comput..

[51]  Amit Sahai,et al.  Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[52]  Brent Waters,et al.  Witness encryption and its applications , 2013, STOC '13.

[53]  Vinod Vaikuntanathan,et al.  Functional Encryption with Bounded Collusions via Multi-party Computation , 2012, CRYPTO.

[54]  Mihir Bellare,et al.  Adaptively Secure Garbling with Applications to One-Time Programs and Secure Outsourcing , 2012, ASIACRYPT.

[55]  Stanislaw Jarecki,et al.  Adaptively Secure Threshold Cryptography: Introducing Concurrency, Removing Erasures , 2000, EUROCRYPT.

[56]  Daniele Micciancio,et al.  Compactness vs Collusion Resistance in Functional Encryption , 2016, IACR Cryptol. ePrint Arch..

[57]  Jonathan Katz,et al.  Adaptively-Secure, Non-interactive Public-Key Encryption , 2005, TCC.

[58]  Shafi Goldwasser,et al.  Functional Signatures and Pseudorandom Functions , 2014, Public Key Cryptography.