Excitatory signal flow and connectivity in a cortical column: focus on barrel cortex

A basic feature of the neocortex is its organization in functional, vertically oriented columns, recurring modules of signal processing and a system of transcolumnar long-range horizontal connections. These columns, together with their network of neurons, present in all sensory cortices, are the cellular substrate for sensory perception in the brain. Cortical columns contain thousands of neurons and span all cortical layers. They receive input from other cortical areas and subcortical brain regions and in turn their neurons provide output to various areas of the brain. The modular concept presumes that the neuronal network in a cortical column performs basic signal transformations, which are then integrated with the activity in other networks and more extended brain areas. To understand how sensory signals from the periphery are transformed into electrical activity in the neocortex it is essential to elucidate the spatial-temporal dynamics of cortical signal processing and the underlying neuronal ‘microcircuits’. In the last decade the ‘barrel’ field in the rodent somatosensory cortex, which processes sensory information arriving from the mysticial vibrissae, has become a quite attractive model system because here the columnar structure is clearly visible. In the neocortex and in particular the barrel cortex, numerous neuronal connections within or between cortical layers have been studied both at the functional and structural level. Besides similarities, clear differences with respect to both physiology and morphology of synaptic transmission and connectivity were found. It is therefore necessary to investigate each neuronal connection individually, in order to develop a realistic model of neuronal connectivity and organization of a cortical column. This review attempts to summarize recent advances in the study of individual microcircuits and their functional relevance within the framework of a cortical column, with emphasis on excitatory signal flow.

[1]  S. R. Cajal Textura del Sistema Nervioso del Hombre y de los Vertebrados, 1899–1904 , 2019 .

[2]  V. Mountcastle Modality and topographic properties of single neurons of cat's somatic sensory cortex. , 1957, Journal of neurophysiology.

[3]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[4]  D. Hubel,et al.  Shape and arrangement of columns in cat's striate cortex , 1963, The Journal of physiology.

[5]  R W Guillery,et al.  Patterns of fiber degeneration in the dorsal lateral geniculate nucleus of the cat following lesions in the visual cortex , 1967, The Journal of comparative neurology.

[6]  T. Woolsey,et al.  The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. , 1970, Brain research.

[7]  J. Szentágothai The ‘module-concept’ in cerebral cortex architecture , 1975, Brain Research.

[8]  A. Cowey,et al.  The axo-axonic interneuron in the cerebral cortex of the rat, cat and monkey , 1982, Neuroscience.

[9]  D. Simons,et al.  Morphology of Golgi‐Cox‐impregnated barrel neurons in rat SmI cortex , 1984, The Journal of comparative neurology.

[10]  T. Wiesel,et al.  Patterns of synaptic input to layer 4 of cat striate cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  Karl F. Jensen,et al.  Evidence for two complementary patterns of thalamic input to the rat somatosensory cortex , 1988, Brain Research.

[12]  Kevan A. C. Martin,et al.  A Canonical Microcircuit for Neocortex , 1989, Neural Computation.

[13]  D. Simons,et al.  Spatial organization of thalamocortical and corticothalamic projection systems in the rat SmI barrel cortex , 1989, The Journal of comparative neurology.

[14]  H. Dodt,et al.  Visualizing unstained neurons in living brain slices by infrared DIC-videomicroscopy , 1990, Brain Research.

[15]  Prof. Dr. Valentino Braitenberg,et al.  Anatomy of the Cortex , 1991, Studies of Brain Function.

[16]  T. M. Mayhew,et al.  Anatomy of the Cortex: Statistics and Geometry. , 1991 .

[17]  M. Armstrong‐James,et al.  Flow of excitation within rat barrel cortex on striking a single vibrissa. , 1992, Journal of neurophysiology.

[18]  E. Callaway,et al.  Photostimulation using caged glutamate reveals functional circuitry in living brain slices. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[19]  A. Thomson,et al.  Fluctuations in pyramid-pyramid excitatory postsynaptic potentials modified by presynaptic firing pattern and postsynaptic membrane potential using paired intracellular recordings in rat neocortex , 1993, Neuroscience.

[20]  R. Lin,et al.  Thalamic afferents of the rat barrel cortex: a light- and electron-microscopic study using Phaseolus vulgaris leucoagglutinin as an anterograde tracer. , 1993, Somatosensory & motor research.

[21]  J. C. Anderson,et al.  Polyneuronal innervation of spiny stellate neurons in cat visual cortex , 1994, The Journal of comparative neurology.

[22]  J Deuchars,et al.  Relationships between morphology and physiology of pyramid‐pyramid single axon connections in rat neocortex in vitro. , 1994, The Journal of physiology.

[23]  S. Buffer,et al.  Barreloids in adult rat thalamus: Three‐dimensional architecture and relationship to somatosensory cortical barrels , 1995, The Journal of comparative neurology.

[24]  E. Jones,et al.  The Barrel Cortex of Rodents , 1995, Cerebral Cortex.

[25]  M. Deschenes,et al.  Corticothalamic Projections from the Cortical Barrel Field to the Somatosensory Thalamus in Rats: A Single‐fibre Study Using Biocytin as an Anterograde Tracer , 1995, The European journal of neuroscience.

[26]  E. G. Jones,et al.  Distribution of four types of synapse on physiologically identified relay neurons in the ventral posterior thalamic nucleus of the cat , 1995, The Journal of comparative neurology.

[27]  M. Diamond Somatosensory Thalamus of the Rat , 1995 .

[28]  C. Koch,et al.  Recurrent excitation in neocortical circuits , 1995, Science.

[29]  S. Siegelbaum,et al.  Regulation of hippocampal transmitter release during development and long-term potentiation. , 1995, Science.

[30]  K. Martin,et al.  Excitatory synaptic inputs to spiny stellate cells in cat visual cortex , 1996, Nature.

[31]  H. Markram,et al.  Redistribution of synaptic efficacy between neocortical pyramidal neurons , 1996, Nature.

[32]  G. Buzsáki,et al.  Interneurons of the hippocampus , 1998, Hippocampus.

[33]  E. Fetz,et al.  Synaptic Interactions between Primate Precentral Cortex Neurons Revealed by Spike-Triggered Averaging of Intracellular Membrane Potentials In Vivo , 1996, The Journal of Neuroscience.

[34]  H. Markram,et al.  The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Y. Kubota,et al.  GABAergic cell subtypes and their synaptic connections in rat frontal cortex. , 1997, Cerebral cortex.

[36]  V. Mountcastle The columnar organization of the neocortex. , 1997, Brain : a journal of neurology.

[37]  H. Markram,et al.  Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. , 1997, The Journal of physiology.

[38]  D. Johnston,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997 .

[39]  C. Pouzat,et al.  Developmental Regulation of Basket/Stellate Cell→Purkinje Cell Synapses in the Cerebellum , 1997, The Journal of Neuroscience.

[40]  M. Deschenes,et al.  Projections to layer VI of the posteromedial barrel field in the rat: a reappraisal of the role of corticothalamic pathways. , 1998, Cerebral cortex.

[41]  P. Somogyi,et al.  Salient features of synaptic organisation in the cerebral cortex 1 Published on the World Wide Web on 3 March 1998. 1 , 1998, Brain Research Reviews.

[42]  S. Hestrin,et al.  Frequency-dependent synaptic depression and the balance of excitation and inhibition in the neocortex , 1998, Nature Neuroscience.

[43]  A. Thomson,et al.  Postsynaptic pyramidal target selection by descending layer III pyramidal axons: dual intracellular recordings and biocytin filling in slices of rat neocortex , 1998, Neuroscience.

[44]  H. Markram,et al.  Differential signaling via the same axon of neocortical pyramidal neurons. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[45]  P. Somogyi,et al.  Differentially Interconnected Networks of GABAergic Interneurons in the Visual Cortex of the Cat , 1998, The Journal of Neuroscience.

[46]  Y. Kubota,et al.  Neurochemical features and synaptic connections of large physiologically-identified GABAergic cells in the rat frontal cortex , 1998, Neuroscience.

[47]  B Sakmann,et al.  Transmitter release modulation in nerve terminals of rat neocortical pyramidal cells by intracellular calcium buffers , 1998, The Journal of physiology.

[48]  Frances S. Chance,et al.  Synaptic Depression and the Temporal Response Characteristics of V1 Cells , 1998, The Journal of Neuroscience.

[49]  P. Somogyi,et al.  Target-cell-specific facilitation and depression in neocortical circuits , 1998, Nature Neuroscience.

[50]  J. A. Varela,et al.  Differential Depression at Excitatory and Inhibitory Synapses in Visual Cortex , 1999, The Journal of Neuroscience.

[51]  M. C. Angulo,et al.  Developmental Synaptic Changes Increase the Range of Integrative Capabilities of an Identified Excitatory Neocortical Connection , 1999, The Journal of Neuroscience.

[52]  J. Lübke,et al.  Reliable synaptic connections between pairs of excitatory layer 4 neurones within a single ‘barrel’ of developing rat somatosensory cortex , 1999, The Journal of physiology.

[53]  B. Connors,et al.  Sensory experience modifies the short-term dynamics of neocortical synapses , 1999, Nature.

[54]  K. Martin,et al.  Intracortical excitation of spiny neurons in layer 4 of cat striate cortex in vitro. , 1999, Cerebral cortex.

[55]  B. Sakmann,et al.  Developmental Switch in the Short-Term Modification of Unitary EPSPs Evoked in Layer 2/3 and Layer 5 Pyramidal Neurons of Rat Neocortex , 1999, The Journal of Neuroscience.

[56]  A. Keller,et al.  Neonatal whisker clipping alters intracortical, but not thalamocortical projections, in rat barrel cortex , 1999, The Journal of comparative neurology.

[57]  B. Sakmann,et al.  Coincidence detection and changes of synaptic efficacy in spiny stellate neurons in rat barrel cortex , 1999, Nature Neuroscience.

[58]  A. Keller,et al.  Thalamic-Evoked Synaptic Interactions in Barrel Cortex Revealed by Optical Imaging , 2000, The Journal of Neuroscience.

[59]  M. Deschenes,et al.  Corticothalamic projections from layer 5 of the vibrissal barrel cortex in the rat , 2000, The Journal of comparative neurology.

[60]  J. Lübke,et al.  Columnar Organization of Dendrites and Axons of Single and Synaptically Coupled Excitatory Spiny Neurons in Layer 4 of the Rat Barrel Cortex , 2000, The Journal of Neuroscience.

[61]  R. Yuste,et al.  Optical probing of neuronal circuits with calcium indicators. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[62]  J. Rossier,et al.  Classification of fusiform neocortical interneurons based on unsupervised clustering. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[63]  B. Sakmann,et al.  The Excitatory Neuronal Network of Rat Layer 4 Barrel Cortex , 2000, The Journal of Neuroscience.

[64]  E. Callaway,et al.  Laminar sources of synaptic input to cortical inhibitory interneurons and pyramidal neurons , 2000, Nature Neuroscience.

[65]  Bernhard Hellwig,et al.  A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual cortex , 2000, Biological Cybernetics.

[66]  H. Markram,et al.  Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. , 2000, Science.

[67]  A. Wright,et al.  Corticofugal axons from adjacent ‘barrel’ columns of rat somatosensory cortex: cortical and thalamic terminal patterns , 2000, Journal of anatomy.

[68]  P. Somogyi,et al.  Proximally targeted GABAergic synapses and gap junctions synchronize cortical interneurons , 2000, Nature Neuroscience.

[69]  A. Agmon,et al.  Diverse Types of Interneurons Generate Thalamus-Evoked Feedforward Inhibition in the Mouse Barrel Cortex , 2001, The Journal of Neuroscience.

[70]  B Sakmann,et al.  Functionally Independent Columns of Rat Somatosensory Barrel Cortex Revealed with Voltage-Sensitive Dye Imaging , 2001, The Journal of Neuroscience.

[71]  R. Yuste,et al.  Stereotyped position of local synaptic targets in neocortex. , 2001, Science.

[72]  E M Callaway,et al.  Layer-Specific Input to Distinct Cell Types in Layer 6 of Monkey Primary Visual Cortex , 2001, The Journal of Neuroscience.

[73]  M. Atzori,et al.  Differential synaptic processing separates stationary from transient inputs to the auditory cortex , 2001, Nature Neuroscience.

[74]  Kenneth D Miller,et al.  Processing in layer 4 of the neocortical circuit: new insights from visual and somatosensory cortex , 2001, Current Opinion in Neurobiology.

[75]  R. Kötter,et al.  Layer-Specific Intracolumnar and Transcolumnar Functional Connectivity of Layer V Pyramidal Cells in Rat Barrel Cortex , 2001, The Journal of Neuroscience.

[76]  C. Petersen,et al.  Short-term dynamics of synaptic transmission within the excitatory neuronal network of rat layer 4 barrel cortex. , 2002, Journal of neurophysiology.

[77]  Adam M Sillito,et al.  Corticothalamic interactions in the transfer of visual information. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[78]  Harvey A Swadlow,et al.  Thalamocortical control of feed-forward inhibition in awake somatosensory 'barrel' cortex. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[79]  M. Deschenes,et al.  Dendroarchitecture of Relay Cells in Thalamic Barreloids: A Substrate for Cross-Whisker Modulation , 2002, The Journal of Neuroscience.

[80]  Henry Markram,et al.  Coding of temporal information by activity-dependent synapses. , 2002, Journal of neurophysiology.

[81]  Randy M Bruno,et al.  Feedforward Mechanisms of Excitatory and Inhibitory Cortical Receptive Fields , 2002, The Journal of Neuroscience.

[82]  R. Silver,et al.  Synaptic connections between layer 4 spiny neurone‐ layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column , 2002, The Journal of physiology.

[83]  B. Sakmann,et al.  ‐Dynamic representation of whisker deflection by synaptic potentials in spiny stellate and pyramidal cells in the barrels and septa of layer 4 rat somatosensory cortex , 2002, The Journal of physiology.

[84]  G. Tamás,et al.  Identified Sources and Targets of Slow Inhibition in the Neocortex , 2003, Science.

[85]  B. Sakmann,et al.  Dynamic Receptive Fields of Reconstructed Pyramidal Cells in Layers 3 and 2 of Rat Somatosensory Barrel Cortex , 2003, The Journal of physiology.

[86]  R. Kötter,et al.  Cell Type-Specific Circuits of Cortical Layer IV Spiny Neurons , 2003, The Journal of Neuroscience.

[87]  J. Lübke,et al.  Morphometric analysis of the columnar innervation domain of neurons connecting layer 4 and layer 2/3 of juvenile rat barrel cortex. , 2003, Cerebral cortex.

[88]  Karel Svoboda,et al.  Circuit Analysis of Experience-Dependent Plasticity in the Developing Rat Barrel Cortex , 2003, Neuron.

[89]  A. Schierloh,et al.  Circuitry of rat barrel cortex investigated by infrared-guided laser stimulation , 2003, Neuroreport.

[90]  D. Simons,et al.  Cortical damping: analysis of thalamocortical response transformations in rodent barrel cortex. , 2003, Cerebral cortex.

[91]  R. Silver,et al.  High-Probability Uniquantal Transmission at Excitatory Synapses in Barrel Cortex , 2003, Science.

[92]  B. Connors,et al.  Two dynamically distinct inhibitory networks in layer 4 of the neocortex. , 2003, Journal of neurophysiology.

[93]  T. Harkany,et al.  Pyramidal cell communication within local networks in layer 2/3 of rat neocortex , 2003, The Journal of physiology.

[94]  R. Douglas,et al.  Neuronal circuits of the neocortex. , 2004, Annual review of neuroscience.

[95]  Ad Aertsen,et al.  Synapses on axon collaterals of pyramidal cells are spaced at random intervals: a Golgi study in the mouse cerebral cortex , 1994, Biological Cybernetics.

[96]  E. Welker,et al.  Ultrastructure of giant and small thalamic terminals of cortical origin: a study of the projections from the barrel cortex in mice using Phaseolus vulgaris leuco-agglutinin (PHA-L) , 2004, Experimental Brain Research.

[97]  F. Karube,et al.  Axon Branching and Synaptic Bouton Phenotypes in GABAergic Nonpyramidal Cell Subtypes , 2004, The Journal of Neuroscience.

[98]  Bert Sakmann,et al.  Sub‐ and suprathreshold receptive field properties of pyramidal neurones in layers 5A and 5B of rat somatosensory barrel cortex , 2004, The Journal of physiology.

[99]  B. Sakmann,et al.  Single Spine Ca2+ Signals Evoked by Coincident EPSPs and Backpropagating Action Potentials in Spiny Stellate Cells of Layer 4 in the Juvenile Rat Somatosensory Barrel Cortex , 2004, The Journal of Neuroscience.

[100]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[101]  Karel Svoboda,et al.  Precise Development of Functional and Anatomical Columns in the Neocortex , 2004, Neuron.

[102]  B. Sakmann,et al.  Patch-clamp recordings from the soma and dendrites of neurons in brain slices using infrared video microscopy , 1993, Pflügers Archiv.

[103]  Simona Temereanca,et al.  Functional Topography of Corticothalamic Feedback Enhances Thalamic Spatial Response Tuning in the Somatosensory Whisker/Barrel System , 2004, Neuron.

[104]  Sen Song,et al.  Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits , 2005, PLoS biology.

[105]  G. Shepherd,et al.  Laminar and Columnar Organization of Ascending Excitatory Projections to Layer 2/3 Pyramidal Neurons in Rat Barrel Cortex , 2005, The Journal of Neuroscience.

[106]  D. Johnston,et al.  Target Cell-Dependent Normalization of Transmitter Release at Neocortical Synapses , 2005, Science.

[107]  E. Callaway,et al.  Excitatory cortical neurons form fine-scale functional networks , 2005, Nature.

[108]  I. Soltesz Diversity in the Neuronal Machine: Order and Variability in Interneuronal Microcircuits , 2005 .

[109]  Bert Sakmann,et al.  Monosynaptic Connections between Pairs of Spiny Stellate Cells in Layer 4 and Pyramidal Cells in Layer 5A Indicate That Lemniscal and Paralemniscal Afferent Pathways Converge in the Infragranular Somatosensory Cortex , 2005, The Journal of Neuroscience.

[110]  Igor Timofeev,et al.  Modulation of synaptic transmission in neocortex by network activities , 2005, The European journal of neuroscience.

[111]  David S. Greenberg,et al.  Imaging input and output of neocortical networks in vivo. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[112]  Alex M Thomson,et al.  Excitatory connections made by presynaptic cortico-cortical pyramidal cells in layer 6 of the neocortex. , 2005, Cerebral cortex.

[113]  A. Aertsen,et al.  Controlling synaptic input patterns in vitro by dynamic photo stimulation. , 2005, Journal of neurophysiology.

[114]  G. Shepherd,et al.  Geometric and functional organization of cortical circuits , 2005, Nature Neuroscience.

[115]  R. Segev,et al.  How silent is the brain: is there a “dark matter” problem in neuroscience? , 2006, Journal of Comparative Physiology A.

[116]  J. Lübke,et al.  Efficacy and connectivity of intracolumnar pairs of layer 2/3 pyramidal cells in the barrel cortex of juvenile rats , 2006, The Journal of physiology.

[117]  Rafael Yuste,et al.  Reverse optical probing (ROPING) of neocortical circuits , 2006, Synapse.

[118]  B. Sakmann,et al.  Cortex Is Driven by Weak but Synchronously Active Thalamocortical Synapses , 2006, Science.

[119]  K. Svoboda,et al.  Interdigitated Paralemniscal and Lemniscal Pathways in the Mouse Barrel Cortex , 2006, PLoS biology.

[120]  Edward M Callaway,et al.  Local connections to specific types of layer 6 neurons in the rat visual cortex. , 2006, Journal of neurophysiology.

[121]  R Kötter,et al.  Morphology, electrophysiology and functional input connectivity of pyramidal neurons characterizes a genuine layer va in the primary somatosensory cortex. , 2006, Cerebral cortex.

[122]  H. Markram,et al.  Spontaneous and evoked synaptic rewiring in the neonatal neocortex , 2006, Proceedings of the National Academy of Sciences.

[123]  E. Ahissar,et al.  Parallel Thalamic Pathways for Whisking and Touch Signals in the Rat , 2006, PLoS biology.

[124]  I. Soltesz Diversity in the Neuronal Machine , 2006 .

[125]  H. Markram,et al.  Morphological, Electrophysiological, and Synaptic Properties of Corticocallosal Pyramidal Cells in the Neonatal Rat Neocortex , 2006 .

[126]  Cpj de Kock,et al.  Layer‐ and cell‐type‐specific suprathreshold stimulus representation in rat primary somatosensory cortex , 2007, The Journal of physiology.

[127]  Moritz Helmstaedter,et al.  Monosynaptic connections between pairs of L5A pyramidal neurons in columns of juvenile rat somatosensory cortex. , 2008, Cerebral cortex.

[128]  N. Wittenburg,et al.  Transformation from temporal to rate coding in a somatosensory thalamocortical pathway , 2022 .