Beyond the Classical Performance Limitations Controlling Uncertain MIMO Systems: UAV Applications

Abstract : This paper summarizes a new methodology to design sequential non-diagonal QFT controllers for multi-input multi-output MIMO systems with uncertainty, which is a central issue in UAV control systems. It also demonstrates the feasibility of that methodology to control the position and attitude of a 6x6 MIMO spacecraft with large flexible appendages. The last part of the paper introduces a new practical methodology to design robust controllers that work under a switching mechanism, going beyond the classical linear limitations and giving a solution for the well-known robustness- performance trade-off.

[1]  Steven J. Rasmussen,et al.  Quantitative Feedback Theory: Fundamentals and Applications, Second Edition , 2005 .

[2]  Oded Yaniv,et al.  Multi-input/single-output computer-aided control design using the quantitative feedback theory , 1993 .

[3]  R. Decarlo,et al.  Perspectives and results on the stability and stabilizability of hybrid systems , 2000, Proceedings of the IEEE.

[4]  Matthew A. Franchek,et al.  Robust Nondiagonal Controller Design for Uncertain Multivariable Regulating Systems , 1997 .

[5]  Ian Postlethwaite,et al.  Multivariable Feedback Control: Analysis and Design , 1996 .

[6]  A. Morse,et al.  Basic problems in stability and design of switched systems , 1999 .

[7]  Clyde F. Martin,et al.  A Converse Lyapunov Theorem for a Class of Dynamical Systems which Undergo Switching , 1999, IEEE Transactions on Automatic Control.

[8]  J. Weiner,et al.  Fundamentals and applications , 2003 .

[9]  Mario Garcia-Sanz,et al.  Design of quantitative feedback theory non-diagonal controllers for use in uncertain multiple-input multiple-output systems , 2005 .

[10]  Graham C. Goodwin,et al.  Fundamental Limitations in Filtering and Control , 1997 .

[11]  J. M. De Bedout,et al.  Stability conditions for the sequential design of non-diagonal multivariable feedback controllers , 2002 .

[12]  Graham C. Goodwin,et al.  Potential benefits of hybrid control for linear time invariant plants , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[13]  E. Bristol On a new measure of interaction for multivariable process control , 1966 .

[14]  I. Horowitz Synthesis of feedback systems , 1963 .

[15]  J. Willems The circle criterion and quadratic Lyapunov functions for stability analysis , 1973 .

[16]  K. Narendra,et al.  A Geometrical Criterion for the Stability of Certain Nonlinear Nonautonomous Systems , 1964 .

[17]  Fred Y. Hadaegh,et al.  Load-sharing robust control of spacecraft formations: deep space and low Earth elliptic orbits , 2007 .

[18]  M. Franchek,et al.  Frequency-based nonlinear controller design for regulating systems subjected to time-domain constraints , 2000 .

[19]  B. Lurie,et al.  Classical feedback control with MATLAB , 2000 .

[20]  Mario Garcia-Sanz,et al.  Nondiagonal QFT Controller Design for a Three-Input Three-Output Industrial Furnace , 2006 .

[21]  Samir Bennani,et al.  Nondiagonal MIMO QFT Controller Design for Darwin-Type Spacecraft With Large Flimsy Appendages , 2008 .

[22]  Naresh K. Sinha,et al.  Modern Control Systems , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[23]  Mario Garcia-Sanz,et al.  Experimental results of the variable speed, direct drive multipole synchronous wind turbine TWT1650 , 2004 .

[24]  Steven J. Rasmussen,et al.  Quantitative feedback theory: fundamentals and applications: C. H. Houpis and S. J. Rasmussen; Marcel Dekker, New York, 1999, ISBN: 0-8247-7872-3 , 2001, Autom..

[25]  I. Horowitz Quantitative feedback theory , 1982 .

[26]  Y. Pyatnitskiy,et al.  Criteria of asymptotic stability of differential and difference inclusions encountered in control theory , 1989 .

[27]  John D'Azzo,et al.  Linear Control System Analysis and Design: Fifth Edition, Revised and Expanded , 2003 .

[28]  N.H. McClamroch,et al.  Performance benefits of hybrid control design for linear and nonlinear systems , 2000, Proceedings of the IEEE.

[29]  Mario Garcia-Sanz,et al.  Beyond the linear limitations by combining switching and QFT: Application to wind turbines pitch control systems , 2009 .

[30]  P. Curran,et al.  A unifying framework for the circle criterion and other quadratic stability criteria , 2003, 2003 European Control Conference (ECC).

[31]  Isaac Horowitz Improved design technique for uncertain multiple-input-multiple-output feedback systems† , 1982 .

[32]  Mario Garcia-Sanz,et al.  Quantitative non‐diagonal controller design for multivariable systems with uncertainty , 2002 .

[33]  Robert Shorten,et al.  Stability Criteria for Switched and Hybrid Systems , 2007, SIAM Rev..