Towards Identifying Fine-Grained Depression Symptoms from Memes

The past decade has observed significant attention toward developing computational methods for classifying social media data based on the presence or absence of mental health conditions. In the context of mental health, for clinicians to make an accurate diagnosis or provide personalized intervention, it is crucial to identify fine-grained mental health symptoms. To this end, we conduct a focused study on depression disorder and introduce a new task of identifying fine-grained depressive symptoms from memes. Toward this, we create a high-quality dataset (RESTORE) annotated with 8 fine-grained depression symptoms based on the clinically adopted PHQ-9 questionnaire.We benchmark RESTORE on 20 strong monomodal and multimodal methods. Additionally, we show how imposing orthogonal constraints on textual and visual feature representations in a multimodal setting can enforce the model to learn non-redundant and de-correlated features leading to a better prediction of fine-grained depression symptoms. Further, we conduct an extensive human analysis and elaborate on the limitations of existing multimodal models that often overlook the implicit connection between visual and textual elements of a meme.

[1]  P. Bhattacharyya,et al.  A Multitask Framework for Sentiment, Emotion and Sarcasm aware Cyberbullying Detection from Multi-modal Code-Mixed Memes , 2022, SIGIR.

[2]  Trevor Darrell,et al.  A ConvNet for the 2020s , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[3]  Erik Cambria,et al.  MentalBERT: Publicly Available Pretrained Language Models for Mental Healthcare , 2021, LREC.

[4]  Tanmoy Chakraborty,et al.  MOMENTA: A Multimodal Framework for Detecting Harmful Memes and Their Targets , 2021, EMNLP.

[5]  Tanmoy Chakraborty,et al.  Exercise? I thought you said 'Extra Fries': Leveraging Sentence Demarcations and Multi-hop Attention for Meme Affect Analysis , 2021, ICWSM.

[6]  Ilya Sutskever,et al.  Learning Transferable Visual Models From Natural Language Supervision , 2021, ICML.

[7]  Guodong Zhou,et al.  Multimodal Topic-Enriched Auxiliary Learning for Depression Detection , 2020, COLING.

[8]  Yi Zhou,et al.  Multimodal Learning For Hateful Memes Detection , 2020, 2021 IEEE International Conference on Multimedia & Expo Workshops (ICMEW).

[9]  Krishnaprasad Thirunarayan,et al.  Identifying Depressive Symptoms from Tweets: Figurative Language Enabled Multitask Learning Framework , 2020, COLING.

[10]  S. Gelly,et al.  An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale , 2020, ICLR.

[11]  Francois R. Lamy,et al.  “When they say weed causes depression, but it’s your fav antidepressant”: Knowledge-aware attention framework for relationship extraction , 2020, PloS one.

[12]  Tanmoy Chakraborty,et al.  SemEval-2020 Task 8: Memotion Analysis- the Visuo-Lingual Metaphor! , 2020, SEMEVAL.

[13]  Louis-Philippe Morency,et al.  Integrating Multimodal Information in Large Pretrained Transformers , 2020, ACL.

[14]  Shi Yin,et al.  A Multi-Modal Hierarchical Recurrent Neural Network for Depression Detection , 2019, AVEC@MM.

[15]  Lysandre Debut,et al.  HuggingFace's Transformers: State-of-the-art Natural Language Processing , 2019, ArXiv.

[16]  Douwe Kiela,et al.  Supervised Multimodal Bitransformers for Classifying Images and Text , 2019, ViGIL@NeurIPS.

[17]  Cho-Jui Hsieh,et al.  VisualBERT: A Simple and Performant Baseline for Vision and Language , 2019, ArXiv.

[18]  S. Leff,et al.  Mental health matters , 2019, Therapy in the Age of Neuroscience.

[19]  Omer Levy,et al.  RoBERTa: A Robustly Optimized BERT Pretraining Approach , 2019, ArXiv.

[20]  Minlong Peng,et al.  Cooperative Multimodal Approach to Depression Detection in Twitter , 2019, AAAI.

[21]  Yiming Yang,et al.  XLNet: Generalized Autoregressive Pretraining for Language Understanding , 2019, NeurIPS.

[22]  Quoc V. Le,et al.  EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks , 2019, ICML.

[23]  Fabien Ringeval,et al.  AVEC 2018 Workshop and Challenge: Bipolar Disorder and Cross-Cultural Affect Recognition , 2018, AVEC@MM.

[24]  Diana Inkpen,et al.  Deep Learning for Depression Detection of Twitter Users , 2018, CLPsych@NAACL-HTL.

[25]  Amit P. Sheth,et al.  Multi-Task Learning Framework for Mining Crowd Intelligence towards Clinical Treatment , 2018, NAACL.

[26]  Dirk Hovy,et al.  Multitask Learning for Mental Health Conditions with Limited Social Media Data , 2017, EACL.

[27]  Frank Hutter,et al.  Decoupled Weight Decay Regularization , 2017, ICLR.

[28]  Nazli Goharian,et al.  Depression and Self-Harm Risk Assessment in Online Forums , 2017, EMNLP.

[29]  Amit P. Sheth,et al.  Semi-Supervised Approach to Monitoring Clinical Depressive Symptoms in Social Media , 2017, ASONAM.

[30]  Nick Schneider,et al.  RegNet: Multimodal sensor registration using deep neural networks , 2017, 2017 IEEE Intelligent Vehicles Symposium (IV).

[31]  Munmun De Choudhury,et al.  Modeling and Understanding Visual Attributes of Mental Health Disclosures in Social Media , 2017, CHI.

[32]  Mark Dredze,et al.  Ethical Research Protocols for Social Media Health Research , 2017, EthNLP@EACL.

[33]  Zhuowen Tu,et al.  Aggregated Residual Transformations for Deep Neural Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[34]  Christopher M. Danforth,et al.  Instagram photos reveal predictive markers of depression , 2016, EPJ Data Science.

[35]  Dirk Hovy,et al.  The Social Impact of Natural Language Processing , 2016, ACL.

[36]  Geoffrey E. Hinton,et al.  Layer Normalization , 2016, ArXiv.

[37]  Glen Coppersmith,et al.  Exploratory Analysis of Social Media Prior to a Suicide Attempt , 2016, CLPsych@HLT-NAACL.

[38]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[39]  Xin Li,et al.  Topic Model for Identifying Suicidal Ideation in Chinese Microblog , 2015, PACLIC.

[40]  Mark Dredze,et al.  Shared Task : Depression and PTSD on Twitter , 2015 .

[41]  Leonardo Max Batista Claudino,et al.  Beyond LDA: Exploring Supervised Topic Modeling for Depression-Related Language in Twitter , 2015, CLPsych@HLT-NAACL.

[42]  Thomas Wetter,et al.  Screening Internet forum participants for depression symptoms by assembling and enhancing multiple NLP methods , 2015, Comput. Methods Programs Biomed..

[43]  Hiroyuki Ohsaki,et al.  Recognizing Depression from Twitter Activity , 2015, CHI.

[44]  Björn W. Schuller,et al.  AVEC 2014: 3D Dimensional Affect and Depression Recognition Challenge , 2014, AVEC '14.

[45]  Mohammad H. Mahoor,et al.  Nonverbal social withdrawal in depression: Evidence from manual and automatic analyses , 2014, Image Vis. Comput..

[46]  Mark Dredze,et al.  Measuring Post Traumatic Stress Disorder in Twitter , 2014, ICWSM.

[47]  Forrest N. Iandola,et al.  DenseNet: Implementing Efficient ConvNet Descriptor Pyramids , 2014, ArXiv.

[48]  Eric Horvitz,et al.  Characterizing and predicting postpartum depression from shared facebook data , 2014, CSCW.

[49]  Björn W. Schuller,et al.  AVEC 2013: the continuous audio/visual emotion and depression recognition challenge , 2013, AVEC@ACM Multimedia.

[50]  Eric Horvitz,et al.  Predicting Depression via Social Media , 2013, ICWSM.

[51]  Albert A. Rizzo,et al.  Automatic behavior descriptors for psychological disorder analysis , 2013, 2013 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG).

[52]  J. Pennebaker,et al.  The Psychological Meaning of Words: LIWC and Computerized Text Analysis Methods , 2010 .

[53]  Fei-Fei Li,et al.  ImageNet: A large-scale hierarchical image database , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[54]  James W. Pennebaker,et al.  The Psychology of Word Use in Depression Forums in English and in Spanish: Texting Two Text Analytic Approaches , 2008, ICWSM.

[55]  L. Gottschalk Language in Psychiatry: A Handbook of Clinical Practice , 2007 .

[56]  Klaus krippendorff,et al.  Measuring the Reliability of Qualitative Text Analysis Data , 2004 .

[57]  R. Spitzer,et al.  The PHQ-9: A new depression diagnostic and severity measure , 2002 .

[58]  G. Alexopoulos,et al.  Stigma as a barrier to recovery: Perceived stigma and patient-rated severity of illness as predictors of antidepressant drug adherence. , 2001, Psychiatric services.

[59]  E. Paul,et al.  Suicide worldwide in 2019 , 2021 .

[60]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[61]  A. Feigl,et al.  The Global Economic Burden of Noncommunicable Diseases , 2012 .