Towards Improving SLAM Algorithm Development using Augmented Reality

Simultaneous Localisation and Mapping (SLAM) is a popular map building approach in autonomous mobile robotics. Because users demand faster and more effective algorithms, SLAM remains an active area of research. However, the increasing complexity of applications, such as the environments the algorithm is applied to, makes it difficult to debug, evaluate and optimise such algorithms. Our preliminary research indicates that the algorithm development can be improved by using Augmented Reality (AR) systems, which visualise the robot’s internal program state and related information specifically in the context of testing and debugging SLAM algorithms. Using inherent SLAM uncertainties and error-sources identified in literature, we developed requirements which an AR system must fulfil in order to optimise the testing, debugging and design of SLAM algorithms.

[1]  Frank Dellaert,et al.  Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing , 2006, Int. J. Robotics Res..

[2]  Eduardo Mario Nebot,et al.  Scan-SLAM: Combining EKF-SLAM and Scan Correlation , 2005, FSR.

[3]  Eduardo Mario Nebot,et al.  Improving computational and memory requirements of simultaneous localization and map building algorithms , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[4]  Paul Newman,et al.  Outdoor SLAM using visual appearance and laser ranging , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[5]  Ronald Azuma,et al.  A Survey of Augmented Reality , 1997, Presence: Teleoperators & Virtual Environments.

[6]  Javier González,et al.  A New Approach for Large-Scale Localization and Mapping: Hybrid Metric-Topological SLAM , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[7]  Andrew Y. C. Nee,et al.  Methodologies for immersive robot programming in an augmented reality environment , 2006, GRAPHITE '06.

[8]  Tom Duckett,et al.  Mini-SLAM: Minimalistic Visual SLAM in Large-Scale Environments Based on a New Interpretation of Image Similarity , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[9]  Henrik I. Christensen,et al.  Graphical SLAM for Outdoor Applications , 2007, J. Field Robotics.

[10]  Patric Jensfelt,et al.  EKF SLAM updates in O(n) with Divide and Conquer SLAM , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[11]  Jagath Samarabandu,et al.  Recent advances in simultaneous localization and map-building using computer vision , 2007, Adv. Robotics.

[12]  José A. Castellanos,et al.  Linear time vehicle relocation in SLAM , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[13]  Olivier Stasse,et al.  MonoSLAM: Real-Time Single Camera SLAM , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Kurt Konolige,et al.  Incremental mapping of large cyclic environments , 1999, Proceedings 1999 IEEE International Symposium on Computational Intelligence in Robotics and Automation. CIRA'99 (Cat. No.99EX375).

[15]  Yolanda González Cid,et al.  Real-time 3d SLAM with wide-angle vision , 2004 .

[16]  S. Sukkarieh,et al.  Co-operative Localisation and Mapping for Multiple UAVs in Unknown Environments , 2007, 2007 IEEE Aerospace Conference.

[17]  Bruce A. MacDonald,et al.  Developer oriented visualisation of a robot program , 2006, HRI '06.

[18]  David W. Payton,et al.  World embedded interfaces for human-robot interaction , 2003, 36th Annual Hawaii International Conference on System Sciences, 2003. Proceedings of the.

[19]  Danica Kragic,et al.  Object detection and mapping for service robot tasks , 2007, Robotica.

[20]  Hong Guo,et al.  Finding Disaster Victims: A Sensory System for Robot-Assisted 3D Mapping of Urban Search and Rescue Environments , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[21]  Hans Utz,et al.  Miro - middleware for mobile robot applications , 2002, IEEE Trans. Robotics Autom..

[22]  Salah Sukkarieh,et al.  Building a Robust Implementation of Bearing‐only Inertial SLAM for a UAV , 2007, J. Field Robotics.

[23]  Wolfram Burgard,et al.  Map building with mobile robots in dynamic environments , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[24]  Eduardo Mario Nebot,et al.  Optimization of the simultaneous localization and map-building algorithm for real-time implementation , 2001, IEEE Trans. Robotics Autom..

[25]  Hanumant Singh,et al.  Visually Navigating the RMS Titanic with SLAM Information Filters , 2005, Robotics: Science and Systems.

[26]  Timothy S. Bailey,et al.  Mobile Robot Localisation and Mapping in Extensive Outdoor Environments , 2002 .

[27]  Jennifer Healey,et al.  Augmented Reality through Wearable Computing , 1997, Presence: Teleoperators & Virtual Environments.

[28]  Samuel J. Davey Simultaneous Localization and Map Building Using the Probabilistic Multi-Hypothesis Tracker , 2007, IEEE Transactions on Robotics.

[29]  Ronald T. Azuma W Enabling Technologies Yohan Baillot Nrl Virtual Reality Lab/itt Advanced Engineering Recent Advances in Augmented Reality , 2022 .

[30]  Juan D. Tardós,et al.  Data association in stochastic mapping using the joint compatibility test , 2001, IEEE Trans. Robotics Autom..

[31]  José A. Castellanos,et al.  Robocentric map joining: Improving the consistency of EKF-SLAM , 2007, Robotics Auton. Syst..

[32]  J. Edward Swan,et al.  Survey of User-Based Experimentation in Augmented Reality , 2005 .

[33]  Masahiro Tomono,et al.  Monocular SLAM Using a Rao-Blackwellised Particle Filter with Exhaustive Pose Space Search , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[34]  Noritaka Osawa,et al.  An Immersive Programming System: Ougi , 2002 .

[35]  Y. Charlie Hu,et al.  P-SLAM: Simultaneous Localization and Mapping With Environmental-Structure Prediction , 2007, IEEE Transactions on Robotics.

[36]  Toby H. J. Collett,et al.  Augmented reality visualisation for mobile robot developers , 2007 .

[37]  Sebastian Thrun,et al.  FastSLAM 2.0: an improved particle filtering algorithm for simultaneous localization and mapping that provably converges , 2003, IJCAI 2003.

[38]  Hanumant Singh,et al.  Exactly Sparse Delayed-State Filters , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[39]  Hugh Durrant-Whyte,et al.  Simultaneous localization and mapping (SLAM): part II , 2006 .

[40]  John J. Leonard,et al.  Explore and return: experimental validation of real-time concurrent mapping and localization , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[41]  Sebastian Thrun,et al.  FastSLAM: a factored solution to the simultaneous localization and mapping problem , 2002, AAAI/IAAI.

[42]  S. Sukkarieh,et al.  Autonomous airborne navigation in unknown terrain environments , 2004, IEEE Transactions on Aerospace and Electronic Systems.

[43]  Sebastian Thrun,et al.  Perspectives on standardization in mobile robot programming: the Carnegie Mellon Navigation (CARMEN) Toolkit , 2003, Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453).

[44]  Arto Visala,et al.  Simultaneous Localization and Mapping for Forest Harvesters , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[45]  R. Nunez,et al.  A human-robot interaction system for navigation supervision based on augmented reality , 2006, MELECON 2006 - 2006 IEEE Mediterranean Electrotechnical Conference.

[46]  Y. Charlie Hu,et al.  Simultaneous localization and mapping with environmental structure prediction , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[47]  Sebastian Thrun,et al.  Online simultaneous localization and mapping with detection and tracking of moving objects: theory and results from a ground vehicle in crowded urban areas , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[48]  William K. Durfee,et al.  IEEE/RSJ/GI International Conference on Intelligent Robots and Systems , 1994 .

[49]  Brian Scassellati,et al.  Active vision for sociable robots , 2001, IEEE Trans. Syst. Man Cybern. Part A.

[50]  Roland Siegwart,et al.  Introduction to Autonomous Mobile Robots , 2004 .

[51]  Ian D. Reid,et al.  Towards constant time SLAM using postponement , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[52]  Nando de Freitas,et al.  Analysis of Particle Methods for Simultaneous Robot Localization and Mapping and a New Algorithm: Marginal-SLAM , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[53]  Udo Frese,et al.  Treemap: An O(log n) algorithm for indoor simultaneous localization and mapping , 2006, Auton. Robots.

[54]  William D. Smart,et al.  Middleware for Robots , 2002 .

[55]  Gaurav S. Sukhatme,et al.  Most valuable player: a robot device server for distributed control , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[56]  Gaurav S. Sukhatme,et al.  Mobile Robot Simultaneous Localization and Mapping in Dynamic Environments , 2005, Auton. Robots.

[57]  Stefan B. Williams Efficient Solutions to Autonomous Mapping and Navigation Problems , 2009 .