Structural and functional heterogeneity of cytochrome c oxidase in S. cerevisiae.

[1]  R. Stuart,et al.  Mutational Analysis of the QRRQ Motif in the Yeast Hig1 Type 2 Protein Rcf1 Reveals a Regulatory Role for the Cytochrome c Oxidase Complex* , 2017, The Journal of Biological Chemistry.

[2]  P. Brzezinski,et al.  Regulatory role of the respiratory supercomplex factors in Saccharomyces cerevisiae , 2016, Proceedings of the National Academy of Sciences.

[3]  Fabian Fischer,et al.  RCF1-dependent respiratory supercomplexes are integral for lifespan-maintenance in a fungal ageing model , 2015, Scientific Reports.

[4]  J. Enríquez,et al.  The function of the respiratory supercomplexes: the plasticity model. , 2014, Biochimica et biophysica acta.

[5]  M. L. Genova,et al.  Functional role of mitochondrial respiratory supercomplexes. , 2014, Biochimica et biophysica acta.

[6]  Egbert J Boekema,et al.  Structures of mitochondrial oxidative phosphorylation supercomplexes and mechanisms for their stabilisation. , 2014, Biochimica et biophysica acta.

[7]  P. Rich,et al.  Functions of the hydrophilic channels in protonmotive cytochrome c oxidase , 2013, Journal of The Royal Society Interface.

[8]  A. Tzagoloff,et al.  Modular assembly of yeast cytochrome oxidase , 2013, Molecular biology of the cell.

[9]  Pier Remigio Salvi,et al.  Following Ligand Migration Pathways from Picoseconds to Milliseconds in Type II Truncated Hemoglobin from Thermobifida fusca , 2012, PloS one.

[10]  P. Rich,et al.  Construction of histidine-tagged yeast mitochondrial cytochrome c oxidase for facile purification of mutant forms. , 2012, The Biochemical journal.

[11]  D. Winge Sealing the Mitochondrial Respirasome , 2012, Molecular and Cellular Biology.

[12]  P. Penczek,et al.  Arrangement of the Respiratory Chain Complexes in Saccharomyces cerevisiae Supercomplex III2IV2 Revealed by Single Particle Cryo-Electron Microscopy* , 2012, The Journal of Biological Chemistry.

[13]  C. Hiser,et al.  Gating and regulation of the cytochrome c oxidase proton pump. , 2012, Biochimica et biophysica acta.

[14]  David A. Lee,et al.  Yeast cytochrome c oxidase: a model system to study mitochondrial forms of the haem-copper oxidase superfamily. , 2012, Biochimica et biophysica acta.

[15]  S. Gygi,et al.  Identification of a protein mediating respiratory supercomplex stability. , 2012, Cell metabolism.

[16]  S. Jakobs,et al.  Rcf1 mediates cytochrome oxidase assembly and respirasome formation, revealing heterogeneity of the enzyme complex. , 2012, Cell metabolism.

[17]  R. Stuart,et al.  Rcf1 and Rcf2, Members of the Hypoxia-Induced Gene 1 Protein Family, Are Critical Components of the Mitochondrial Cytochrome bc1-Cytochrome c Oxidase Supercomplex , 2012, Molecular and Cellular Biology.

[18]  Ville R. I. Kaila,et al.  Proton-coupled electron transfer in cytochrome oxidase. , 2010, Chemical reviews.

[19]  Yafei Huang,et al.  Substrate binding and the catalytic reactions in cbb3-type oxidases: the lipid membrane modulates ligand binding. , 2010, Biochimica et biophysica acta.

[20]  R. Stuart Supercomplex organization of the oxidative phosphorylation enzymes in yeast mitochondria , 2008, Journal of bioenergetics and biomembranes.

[21]  E. Boekema,et al.  A Structural Model of the Cytochrome c Reductase/Oxidase Supercomplex from Yeast Mitochondria* , 2007, Journal of Biological Chemistry.

[22]  P. Brzezinski,et al.  Design principles of proton-pumping haem-copper oxidases. , 2006, Current opinion in structural biology.

[23]  S. Ferguson-Miller,et al.  Energy transduction: proton transfer through the respiratory complexes. , 2006, Annual review of biochemistry.

[24]  R. Gennis,et al.  A single-amino-acid lid renders a gas-tight compartment within a membrane-bound transporter. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[25]  P. Brzezinski,et al.  Structural elements involved in electron‐coupled proton transfer in cytochrome c oxidase , 2004, FEBS letters.

[26]  P. Brzezinski,et al.  Transient binding of CO to Cu(B) in cytochrome c oxidase is dynamically linked to structural changes around a carboxyl group: a time-resolved step-scan Fourier transform infrared investigation. , 2002, Biophysical journal.

[27]  H. Schägger Respiratory Chain Supercomplexes , 2001, IUBMB life.

[28]  K. Pfeiffer,et al.  Supercomplexes in the respiratory chains of yeast and mammalian mitochondria , 2000, The EMBO journal.

[29]  P. Brzezinski,et al.  Factors determining electron-transfer rates in cytochrome c oxidase: investigation of the oxygen reaction in the R. sphaeroides enzyme. , 1998, Biochimica et biophysica acta.

[30]  L. Grivell,et al.  The Respiratory Chain in Yeast Behaves as a Single Functional Unit* , 1998, The Journal of Biological Chemistry.

[31]  G L Liao,et al.  The reduced minus oxidized difference spectra of cytochromes a and a3. , 1996, Biochimica et biophysica acta.

[32]  P. Brzezinski,et al.  Internal electron transfer in cytochrome c oxidase from Rhodobacter sphaeroides. , 1995, Biochemistry.

[33]  R. Dyer,et al.  Photodissociation and recombination of carbonmonoxy cytochrome oxidase: dynamics from picoseconds to kiloseconds. , 1993, Biochemistry.

[34]  W. Vanneste The stoichiometry and absorption spectra of components a and a-3 in cytochrome c oxidase. , 1966, Biochemistry.